ELEC 3004/7312: Signals, Systems & Controls
Week 4: Tutorial 2: Linear Systems

This tutorial reviews linear systems and some basic operations on them in MATLAB.

Part 1. Getting Started Playing with Matlab’s Controls Toolbox
One of MATLAB?’s distinguishing features is its Controls Toolbox. Let’s explore its ability to plot
impulse and step responses.

a) Use doc control/impulse and open the documentation page for the step analysis function

b) Tryexample1l. Does the plot make sense?

c) Another way to get the system is to use the tF function from the coefficients of the of the
Laplacian of the transfer function (as sys=tf(numerator, denominator)).

d) Open doc control/tf and use example 1 to build a model.

e) Now computer the impulse of this model.

Part 2. 2" and 4" Order Model Response (in MATLAB)

Using the notation above, a second order system maybe written as:

tf([1],]1 (b/m or mass normalized damping ratio) (k/m or mass normalized stiffness)])

thus, impulse (tF(1,[1 0.1 10])) gives the response of a spring with a little damping.

Let’s play with this. In MATLAB try...
M = -

= 1;
K = 10;

B =20.1;

num = 1;

den = [M B K];

sys = tf (num,den);
step(sys) ;

figure; impulse(sys);

Now change the M and K and see the response. Or change the magnitude of the step
figure; BIG=100; step(BIG*sys);

Note for future reference that discrete time systems can be specified via the tF function. The command
tf(num,den, ts) creates a discrete-time transfer function with sample time Ts (in seconds).

Part 3. Quarter-Car Model (in MATLAB)

From the “Application of H-Infinity and Mu to Active Suspension Control” note (search for car in the
MATLAB documentation system, select Quarter Car Model).

See attached PDF from MATLAB Help

Continued on Page 2 ...



Part 4. Harmonic Oscillator (LC Circuits)

a) Imagine a system described by: Y+ @’y =0
The characteristic (Laplace) polynomial is s* + @®

What are its roots?
What is the solution for y(t)?

b) Imagine an LC circuit like:
1
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Verify that i=Cv and v=—Li

c) What is the characteristic equation for the circuit in (b)?

d) Verify that the oscillation frequency for the circuit in (b) is @ = %



Application of H-Infinity and Mu to Active Suspension
Control

Conventional passive suspensions employ a spring and damper between the car body
and wheel assembly, representing a tradeoff between conflicting performance metrics
such as passenger comfort, road holding, and suspension deflection. Active
suspensions allow the designer to balance these objectives using a hydraulic actuator,
controlled by feedback, between the chassis and wheel assembly.

In this section, you design an active suspension system for a quarter car body and
wheel assembly model using the H_ control design technique. You will see the tradeoff
between passenger comfort, i.e., minimizing car body travel, versus suspension travel
as the performance objective.

Quarter Car Suspension Model

The quarter car model shown is used to design active suspension control laws.
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The sprung mass m_ represents the car chassis, while the unsprung mass m,.
represents the wheel assembly. The spring, ks, and damper, bs, represent a passive
spring and shock absorber that are placed between the car body and the wheel
assembly, while the spring k serves to model the compressibility of the pneumatic tire.
The variablesxs, X o and r are the car body travel, the wheel travel, and the road
disturbance, respectively. The force fs, kN, applied between the sprung and unsprung
masses, is controlled by feedback and represents the active component of the
suspension system. The dynamics of the actuator are ignored in this example, and

assume that the control signal is the force fs. Defining X, =X, T2 = 'T#, Xy 1= X, and

Y4 = Yus the following is the state-space description of the quarter car dynamics.
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The following component values are taken from reference9].

ms = 290; % kg
mus = 59; % kg
bs = 1000; % N/m/s
ks = 16182 ; % N/m
kt = 190000; % N/m

A linear, time-invariant model of the quarter car model, gcar, is constructed from the
equations of motion and parameter values. The inputs to the model are the road
disturbance and actuator force, respectively, and the outputs are the car body
deflection, acceleration, and suspension deflection.

Al2 = [ 010 0; [-ks -bs ks bs]/ms ];
A34 = [ 0 0 0 1; [ks bs -ks-kt -bs]/mus];
B12 = [0 0; O 10000/ms];
B34 = [0 0; [kt -10000]/mus];
C = [1 00 0; A12(2,:); 1 0 -1 0; 00 O 017
D = [0 0; B12(2,:); 0 0; O 11;

(

[Al2; A34]1,[Bl2; B34]1,C,D)

It is well known [8] that the acceleration transfer function has an invariant point at the
tirehop frequency, 56.7 rad/s. Similarly, the suspension deflection transfer function has
an invariant point at the rattlespace frequency, 23.3 rad/s. The tradeoff between
passenger comfort and suspension deflection is because it is not possible to
simultaneously keep both transfer functions small around the tirehop frequency and in
the low frequency range.

#. Back to Top
Linear H-Infinity Controller Design

The design of linear suspension controllers that emphasize either passenger comfort or
suspension deflection. The controllers in this section are designed using linear H_
synthesis [5]. As is standard in the H_ framework, the performance objectives are
achieved via minimizing weighted transfer function norms.

Weighting functions serve two purposes in the H  framework: They allow the direct
comparison of different performance objectives with the same norm, and they allow for
frequency information to be incorporated into the analysis. For more details on H |
control design, refer to [4], [6], [7], [11], and [13]. A block diagram of the H_ control
design interconnection for the active suspension problem is shown below.





