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Digital control lolwut? 

Once upon a time… 

• Electromechanical systems were controlled 

by electromechanical compensators 

– Mechanical flywheel governors, capacitors, 

inductors, resistors, relays, valves, solenoids 

(fun!) 

– But also complex and sensitive! 
 

• Humans developed sophisticated tools for 

designing reliable analog controllers 
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Eg. Early UAV flight control 

[USAF] 

Control 

stuff 

The bit that 

goes ‘bang’ 



14 May 2012 

5 

Elec3004 – Signals, Systems and Controls Paul Pounds 

Eg. missile guidance 

[Computer History Museum] [Arnold Reinhold] 
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Computer revolution 

• In the 1950s and 60s very smart people 

developed computerised controllers 

• Digital processor implements the control 

algorithm numerically, rather than in 

discrete hardware 

Minuteman ICBM guidance computer components [CHM] 
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Many advantages 

• Practical improvement over analog control: 

– Flexible; reprogrammable to implement 

different control laws for different systems 

– Adaptable; control algorithms can be changed 

on-line, during operation 

– Insensitive to environmental conditions; 

 (heat, EMI, vibration, etc) 

– Compact; handful of components on a PCB 

– Cheap 
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What you already know* 

• Signals can be represented by transfer 

functions in the s-domain 
 

• Roots of a transfer function’s denominator 

(poles) indicate the stability of the system 
 

• Poles move around under feedback control 

– Feedback can stabilise an unstable system 
 

*If you have no idea what I’m talking about, now is the time to mention it. 
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The point 

• While there are discrete analogues for every 

part of continuous systems theory, there are 

unique and important differences you must 

be familiar with 

 

Virtually every control system you will ever 

use will be a computerised digital controller 
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Digital Control Basics 
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Archetypical control system 

• Consider a continuous control system: 

 

 

 

 
 

• The functions of the controller can be 

entirely represented by a discretised 

computer system 

H(s) C(s) S 

plant controller 

y(t) r(t) 
u(t) e(t) 

- 

+ 
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Return to the discrete domain 

• Recall that continuous signals can be 

represented by a series of samples with 

period T 

x 

t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

x(kT) T 
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Zero Order Hold 

• An output value of a synthesised signal is 

held constant until the next value is ready 

– This introduces an effective delay of  T/2 

x 

t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

x 



14 May 2012 

14 

Elec3004 – Signals, Systems and Controls Paul Pounds 

Digitisation 

• Continuous signals sampled with period T 

• kth control value computed at tk = kT 

H(s) 
Difference 

equations 
S 

y(t) r(t) u(t) e(kT) 

- 

+ 

r(kT) 

ADC 

u(kT) 

y(kT) 

controller 

sampler 

DAC 
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Digitisation 

• Continuous signals sampled with period T 

• kth control value computed at tk = kT 

H(s) 
Difference 

equations 
S 

y(t) r(t) u(t) e(kT) 

- 

+ 

r(kT) 

ADC 

u(kT) 

sampler 

y(kT) 

controller 

DAC 
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Difference equations 

• How to represent differential equations in a 

computer?  Difference equations! 

• The output of a difference equation system 

is a function of current and previous values 

of the input and output: 
 

𝑦 𝑡𝑘 = 𝐷 𝑥 𝑡𝑘 , 𝑥 𝑡𝑘−1 , … , 𝑥 𝑡𝑘−𝑛 , 𝑦 𝑡𝑘−1 , … , 𝑦(𝑡𝑘−𝑛)  
 

– We can think of x and y as parameterised in k 

Useful shorthand: 𝑥 𝑡𝑘+𝑖 ≡  𝑥 𝑘 + 𝑖  
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The Root Locus 
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Quick refresher: the root locus 

• The transfer function for a closed-loop 

system can be easily calculated: 

𝑦 = 𝐶𝐻 𝑟 − 𝑦  

𝑦 + 𝐶𝐻𝑦 = 𝐶𝐻𝑟 

∴
𝑦

𝑟
=

𝐶𝐻

1 + 𝐶𝐻
 

 

H C S 

plant controller 

y 
u e 

- 

+ r 
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Quick refresher: the root locus 

• We often care about the effect of increasing 

gain of a control compensator design: 
𝑦

𝑟
=

𝑘𝐶𝐻

1 + 𝑘𝐶𝐻
 

Multiplying by denominator: 

𝑦

𝑟
=

𝑘𝐶𝑛𝐻𝑛

𝐶𝑑𝐻𝑑 + 𝑘𝐶𝑛𝐻𝑛
 

H C S y 
u e 

- 

+ r k 

characteristic 

polynomial 
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Quick refresher: the root locus 

• Pole positions change with increasing gain 

– The trajectory of poles on the pole-zero plot 

with changing k is called the “root locus” 

– This is sometimes quite complex 

 

 

 

 

 
(In practice you’d plot these with computers) 

Img(s) 

Re(s) 

Increasing k 
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Quick ‘n dirty guide to root loci 

• Pole departure asymptotes as 𝑘 → ∞ are 

determined by pole-zero excess (𝑛 −𝑚): 

𝛼 =
 𝑝

𝑖
− 𝑧

𝑖

𝑛−𝑚
,𝜙𝑙 =

𝜋+2𝜋(𝑙−1)

𝑛−𝑚
 

for 𝑙 = 1, 2, … (𝑛 −𝑚) 

Img(z) 

Re(z) 𝛼 

𝜙 
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Quick ‘n dirty guide to root loci 

• Pole departure/zero arrival angles given by: 

𝑞𝜙dep =  𝜓𝑖 −  𝜙𝑖 − 𝜋 − 2𝜋𝑙 

𝑞𝜓arr =  𝜙𝑖 −  𝜓𝑖 + 𝜋 + 2𝜋𝑙  

for qth poles or zeros, and for 𝑙 = 1, 2, … 𝑞 

 Img(z) 

Re(z) 

𝜙 
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Quick ‘n dirty guide to root loci 

• Draw the root locus on the real axis to the 

left of an odd number of poles 

– Zeros count as ‘negative’ poles 

• Now draw the locus to observe the angle 

constraints 
Img(z) 

Re(z) 

𝜙 
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Approximation Methods 
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Euler’s method* 

• Dynamic systems can be approximated† by 

recognising that: 
 

 

𝑥 ≅
𝑥 𝑘 + 1 − 𝑥 𝑘

𝑇
 

T 

x(tk) 

x(tk+1) 

*Also known as the forward rectangle rule 

†Just an approximation – more on this later 

• As 𝑇 → 0, approximation 

error approaches 0  
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Euler’s method 

• Euler approximation can produce a system 

z-transform directly 

• Use the substitution: 
 

𝑠𝑛 =
𝑧 − 1

𝑇

𝑛
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Tustin’s method 

• Tustin uses a trapezoidal integration 

approximation (compare Euler’s rectangles) 

• Integral between two samples treated as a 

straight line: 
𝑢 𝑘𝑇 = 𝑇

2
 𝑥 𝑘 − 1 + 𝑥(𝑘)  

Taking the derivative, then z-transform yields: 

 𝑠 =
2

𝑇

𝑧−1

𝑧+1
 

 

which can be substituted into continuous models 

(𝑘 − 1)𝑇 

x(tk) 

x(tk+1) 

𝑘𝑇 
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Matched pole-zero 

• If 𝑧 = 𝑒𝑠𝑇, why can’t we just make a direct 

substitution and go home? 
 

𝑌(𝑠)

𝑋(𝑠)
=

𝑠+𝑎

𝑠+𝑏
         

𝑌(𝑧)

𝑋(𝑧)
=

𝑧−𝑒−𝑎𝑇

𝑧−𝑒−𝑏𝑇
 

• Kind of! 

– Still an approximation 

– Produces quasi-causal system (hard to compute) 

– Fortunately, also very easy to calculate. 
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Matched pole-zero 

• The process: 

1. Replace continuous poles and zeros with 

discrete equivalents: 

(𝑠 + 𝑎)       (𝑧 − 𝑒−𝑎𝑇) 
 

2. Scale the discrete system DC gain to match 

the continuous system DC gain 

3. If the order of the denominator is higher than 

the enumerator, multiply the numerator by 

(1 + 𝑧−1) until they are of equal order* 
 

* This introduces an averaging effect like Tustin’s method 
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Modified matched pole-zero 

• We’re prefer it if we didn’t require instant 

calculations to produce timely outputs 

• Modify step 2 to leave the dynamic order of 

the numerator one less than the denominator 

– Can work with slower sample times, and at 

higher frequencies 
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Approximation comparison 

• We’ve been making a lot of approximations 

– Just how goods are these approximations? 

– As you might expect, it depends on how closely 

T matches the bandwidth of the system 

– Also varies by order of the approximation 

 

 Let’s consider the system 

𝐻(𝑠) =  
10

(𝑠+2)(𝑠+10)
  

sampled at 10 Hz 
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Approximation comparison 

• 𝐺𝑍𝑇𝐹(𝑧) =  
0.07132𝑧

(𝑧−0.8187) (𝑧−0.6065)
 

• 𝐺𝑍𝑂𝐻(𝑧) =
0.039803 (𝑧+0.7919)

(𝑧−0.8187) (𝑧−0.6065)
 

• 𝐺𝐹𝑂𝐻 𝑧 =
0.014049 (𝑧+3.148) (𝑧+0.2239)

(𝑧−0.8187) (𝑧−0.6065)
 

• 𝐺𝑇𝑢𝑠𝑡𝑖𝑛 𝑧 =
0.018182 𝑧+1 2

(𝑧−0.8182) (𝑧−0.6)
 

• 𝐺𝑀𝑃𝑍(𝑧) =  
0.035662 (𝑧+1)

(𝑧−0.8187) (𝑧−0.6065)
 

 
*FOH: First Order Hold ‘triangle approximation’ 
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Approximation comparison 

 

All approximations give good 

results for 𝜔 < 𝜔𝑠𝑦𝑠/4  
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Effect of ZOH delay 

• Recall the intrinsic time-delay associated 

with ZOH?  What about that? 

• This is the discrete domain; we can model 

the delay exactly: 

𝐺 𝑧 =
𝑧

𝑧 + 1
𝒵

𝐺(𝑠)

𝑠
 

 

This can be thought of a as a step input, followed by an 

immediate negative step one sample time later 
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The z-Transform 
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Coping with complexity 

• Transfer functions help control complexity 

– Recall the Laplace transform: 

ℒ 𝑓 𝑡 =  𝑓 𝑡 𝑒−𝑠𝑡𝑑𝑡
∞

0

= 𝐹 𝑠  

where 

ℒ 𝑓 𝑡 = 𝑠𝐹(𝑠) 

 

 
Is there a something similar for sampled systems? 

H(s) y(t) x(t) 
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The z-transform 

• The discrete equivalent is the z-Transform†: 

𝒵 𝑓 𝑘 =   𝑓(𝑘)𝑧−𝑘
∞

𝑘=0

= 𝐹 𝑧  

and 

𝒵 𝑓 𝑘 − 1 = 𝑧−1𝐹 𝑧  

 

 

 
 

Convenient! 
 

†This is not an approximation, but approximations are easier to derive 

F(z) y(k) x(k) 
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The z-transform 

• Some useful properties 

– Delay by 𝒏 samples: 𝒵 𝑓 𝑘 − 𝑛 = 𝑧−𝑛𝐹 𝑧  

– Linear: 𝒵 𝑎𝑓 𝑘 + 𝑏𝑔(𝑘) = a𝐹 𝑧 + 𝑏𝐺(𝑧) 

– Convolution: 𝒵 𝑓 𝑘 ∗ 𝑔(𝑘) =  𝐹 𝑧 𝐺(𝑧) 

 

So, all those block diagram manipulation tools 

you know and love will work just the same! 
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The z-transform 

• In practice, you’ll use look-up tables or computer tools (ie. 

Matlab) to find the z-transform of your functions 

 𝑭(𝒔) F(kt) 𝑭(𝒛) 

1

𝑠
 

1 𝑧

𝑧 − 1
 

1

𝑠2
 

𝑘𝑇 𝑇𝑧

𝑧 − 1 2
 

1

𝑠 + 𝑎
 

𝑒−𝑎𝑘𝑇 𝑧

𝑧 − 𝑒−𝑎𝑇
 

1

𝑠 + 𝑎 2
 

𝑘𝑇𝑒−𝑎𝑘𝑇 𝑧𝑇𝑒−𝑎𝑇

𝑧 − 𝑒−𝑎𝑇 2
 

1

𝑠2+ 𝑎2
 

sin (𝑎𝑘𝑇) 𝑧 sin 𝑎𝑇

𝑧2− 2 cos 𝑎𝑇 𝑧 + 1 
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Final value theorem 

• An important question: what is the steady-

state output a stable system at 𝑡 = ∞? 

– For continuous systems, this is found by: 

lim
𝑡→∞

 𝑥 𝑡 = lim
𝑠→0

 𝑠𝑋 𝑠  

 

– The discrete equivalent is: 

lim
𝑘→∞

 𝑥 𝑘 = lim
𝑧→1

 (1 − 𝑧−1)𝑋(𝑧) 

 

(Provided the system is stable) 
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An example! 

• Back to our difference equation: 
𝑦 𝑘 = 𝑥 𝑘 + 𝐴𝑥 𝑘 − 1 − 𝐵𝑦 𝑘 − 1   

becomes 

𝑌 𝑧 = 𝑋 𝑧 + 𝐴𝑧−1𝑋 𝑧 − 𝐵𝑧−1𝑌(𝑧)  
(𝑧 + 𝐵)𝑌(𝑧)  = (𝑧 + 𝐴)𝑋 𝑧  

 

which yields the transfer function: 
 

𝑌(𝑧)

𝑋(𝑧)
=
𝑧 + 𝐴

𝑧 + 𝐵
 

 
Note: It is also not uncommon to see systems expressed as polynomials in 𝑧−𝑛 
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This looks familiar… 

 

• Compare: 

Y s

𝑋 𝑠
=

𝑠+2

𝑠+1
  vs  

𝑌(𝑧)

𝑋(𝑧)
=

𝑧+𝐴

𝑧+𝐵
 

 

How are the Laplace and z domain 

representations related? 
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Consider the simplest system 

• Take a first-order response: 

𝑓 𝑡 = 𝑒−𝑎𝑡 ⇒ ℒ 𝑓 𝑡 =
1

𝑠 + 𝑎
 

• The discrete version is: 

𝑓 𝑘𝑇 = 𝑒−𝑎𝑘𝑇 ⇒ 𝒵 𝑓 𝑘 =
𝑧

𝑧 − 𝑒−𝑎𝑇
 

 

The equivalent system poles are related by 
 

𝑧 = 𝑒𝑠𝑇 
 

That sounds somewhat profound… but what does it mean? 
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The z-Plane and Stability 
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The z-Plane 

• z-domain poles and zeros can be plotted just 

like s-domain poles and zeros: 

 

 

Img(z) 

Re(z) 
1 

Img(s) 

Re(s) 
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Deep insight #1 

The mapping between continuous and discrete 

poles and zeros acts like a distortion of the plane 

Img(z) 

Re(z) 

Img(s) 

Re(s) 

1 

max frequency 



14 May 2012 

47 

Elec3004 – Signals, Systems and Controls Paul Pounds 

The z-Plane 

• We can understand system response by pole 

location in the z-plane 

Img(z) 

Re(z) 
1 

[Adapted from Franklin, Powell and Emami-Naeini] 
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Effect of pole positions 

• We can understand system response by pole 

location in the z-plane 

Img(z) 

Re(z) 
1 

Most like the s-plane 
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Effect of pole positions 

• We can understand system response by pole 

location in the z-plane 

Img(z) 

Re(z) 
1 

Increasing frequency 
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Effect of pole positions 

• We can understand system response by pole 

location in the z-plane 

Img(z) 

Re(z) 
1 

HC SVNT DRACONES 
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Damping and natural frequency 

[Adapted from Franklin, Powell and Emami-Naeini] 

-1.0 -0.8 -0.6 -0.4 0 -0.2 0.2 0.4 0.6 0.8 1.0 

0 

0.2 

0.4 

0.6 

0.8 

1.0 

Re(z) 

Img(z) 

𝑧 = 𝑒𝑠𝑇 where 𝑠 = −𝜁𝜔𝑛 ± 𝑗𝜔𝑛 1 − 𝜁2 
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Root loci in the z-plane 

• The mathematics of polynomial algebra are 

the same in both the s-Plane and the z-Plane: 

 eg. 𝑠2+ 2𝑠 + 1 = 𝑠 + 1 2 

  𝑧2 + 2𝑧 + 1 = 𝑧 + 1 2 

– Roots in a locus move in identical ways for 

identical polynomials 

– What changes is the physical interpretation of 

what the location of each pole represents in 

terms of response behaviour 
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z-plane stability 

• In the z-domain, the unit circle is the system 

stability bound 

 

 

Img(z) 

Re(z) 
1 

unit circle 

Img(s) 

Re(s) 
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z-plane stability 

• In the z-domain, the unit circle is the system 

stability bound 

 

 

Img(z) 

Re(z) 
1 

Img(s) 

Re(s) 

   
     

  
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z-plane stability 

• The z-plane root-locus in closed loop 

feedback behaves just like the s-plane: 

 

 

Img(z) 

Re(z) 
1 

Img(s) 

Re(s) 

  
   ! 
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Deep insight #2 

Gains that stabilise continuous systems can 

actually destabilise digital systems! 

Img(z) 

Re(z) 
1 

Img(s) 

Re(s) 

  
   ! 
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Digital Control Design 
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Two classes of control design 

The system… 

– Isn’t fast enough 

– Isn’t damped enough 

– Overshoots too much 

– Requires too much control action 

(“Performance”) 

 

– Attempts to spontaneously disassemble itself 

(“Stability”) 
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Recall dynamic responses 

• Moving pole positions change system 

response characteristics 

Img(s) 

Re(s) 

   

“More unstable” 

Faster 

More 

Oscillatory 

More damped 

Pure integrator 

𝜃 
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Recall dynamic responses 

• Ditto the z-plane: 
Img(z) 

Re(z) 

   

“More unstable” 

Faster 

More 

Oscillatory 

Pure integrator 

More damped 

? 
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Specification bounds 

• Recall in the continuous domain, response 

performance metrics map to the s-plane: 
Img(s) 

Re(s) 

𝑠 =
4.6

𝑡𝑠
 

𝑠 = 𝜎 

Img(s) 

Re(s) 

𝜃 = sin−1𝜁 

𝜃 

Img(s) 

Re(s) 

𝑠 =
1.8

𝑡𝑟
 

𝜔𝑛 = 𝑠  
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• These map to the discrete domain: 

 

 

 

 

 

 
In practice, you’d use Matlab to plot these, and check that the spec is satisfied 

Discrete bounds 

Img(z) 

Re(z) 

𝑧 = 𝑒−𝑡𝑠𝑇 

𝑧  

Img(z) 

Re(z) 

Img(z) 

Re(z) 
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The fundamental control problem 

 

 

The poles are in the wrong place 

 
How do we get them where we want them to be? 



14 May 2012 

64 

Elec3004 – Signals, Systems and Controls Paul Pounds 

Recall the root locus 

• We know that under feedback gain, the 

poles of the closed-loop system move 

– The root locus tells us where they go! 

– We can solve for this analytically* 

 

 

 

 

 
Root loci can be plotted for all sorts of parameters, not just gain! 

 

Img(s) 

Re(s) 

Increasing k 

1

𝑠(𝑠 + 1)
 

-k 
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Dynamic compensation 

• We can do more than just apply gain! 

– We can add dynamics into the controller that 

alter the open-loop response 

 

 1

𝑠(𝑠 + 1)
 𝑠 + 2 

u -y y 
compensator plant 

𝑠 + 2

𝑠(𝑠 + 1)
 

y -y 
combined system 

Increasing k 

Img(s) 

Re(s) 
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But what dynamics to add? 

• Recognise the following: 

– A root locus starts at poles, terminates at zeros  

 “Holes eat poles” 

– Closely matched pole and zero dynamics cancel 

– The locus is on the real axis to the left of an odd 

number of poles (treat zeros as ‘negative’ poles) 

Img(s) 

Re(s) 
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Common Control Structures 
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Some standard approaches 

• Control engineers have developed time-

tested strategies for building compensators 

• Three classical control structures: 

– Lead 

– Lag 

– Proportional-Integral-Derivative (PID) 

(and its variations: P, I, PI, PD) 

 

How do they work? 
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Lead/lag compensation 

• Serve different purposes, but have a similar 

dynamic structure: 
 

𝐷 𝑠 =
𝑠 + 𝑎

𝑠 + 𝑏
 

 

Note: 

Lead-lag compensators come from the days when control 

engineers cared about constructing controllers from networks 

of op amps using frequency-phase methods.  These days 

pretty much everybody uses PID, but you should at least 

know what the heck they are in case someone asks. 
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Lead compensation: a < b 

 

 

 
 

• Acts to decrease rise-time and overshoot 

– Zero draws poles to the left; adds phase-lead 

– Pole decreases noise 

• Set a near desired 𝜔𝑛; set b at ~3 to 20x a 

Img(s) 

Re(s) 

Faster than 

system dynamics 

Slow open-loop 

plant dynamics 

-a -b 
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Lag compensation: a > b 

 

 

 
 

• Improves steady-state tracking 

– Near pole-zero cancellation; adds phase-lag 

– Doesn’t break dynamic response (too much) 

• Set b near origin; set a at ~3 to 10x b 

Img(s) 

Re(s) 

Very slow 

plant 

dynamics 

-a -b 

Close to pole 
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PID 

• Proportional-Integral-Derivative control is 

the control engineer’s hammer* 

– For P,PI,PD, etc. just remove one or more terms 

 C s =  𝑘 1 +
1

𝜏
𝑖
𝑠
+ 𝜏𝑑𝑠  

 

 
 

*Everything is a nail 

 

 

Proportional 

Integral 

Derivative 
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PID 

• PID control performance is driven by three 

parameters: 

– 𝑘: system gain 

– 𝜏𝑖: integral time-constant 

– 𝜏𝑑: derivative time-constant 

 

You’re already familiar with the effect of gain. 

What about the other two? 
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Integral 

• Integral applies control action based on 

accumulated output error 

– Almost always found with P control 

• Increase dynamic order of signal tracking 

– Step disturbance steady-state error goes to zero 

– Ramp disturbance steady-state error goes to a 

constant offset 

 

Let’s try it! 
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Integral 

• Consider a first order system with a constant 

load disturbance, w; (recall as 𝑡 → ∞, 𝑠 → 0) 

𝑦 = 𝑘
1

𝑠 + 𝑎
(𝑟 − 𝑦) + 𝑤 

(𝑠 + 𝑎)𝑦 = 𝑘 (𝑟 − 𝑦) + (𝑠 + 𝑎)𝑤 

𝑠 + 𝑘 + 𝑎 𝑦 = 𝑘𝑟 + 𝑠 + 𝑎 𝑤 

𝑦 =
𝑘

𝑠 + 𝑘 + 𝑎
𝑟 +

(𝑠 + 𝑎)

𝑠 + 𝑘 + 𝑎
𝑤 

 

1

𝑠 + 𝑎
 𝑘 S y r 

u e - + 
S 

w 
Steady state gain = a/(k+a) 

(never truly goes away) 
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Now with added integral action 

𝑦 = 𝑘 1 +
1

𝜏𝑖𝑠

1

𝑠 + 𝑎
(𝑟 − 𝑦) + 𝑤 

 

𝑦 = 𝑘
𝑠 + 𝜏

𝑖
−1

𝑠

1

𝑠 + 𝑎
(𝑟 − 𝑦) + 𝑤 

 

𝑠 𝑠 + 𝑎 𝑦 = 𝑘 𝑠 + 𝜏
𝑖
−1 𝑟 − 𝑦 + 𝑠 𝑠 + 𝑎 𝑤 

 

𝑠2 + 𝑘 + 𝑎 𝑠 + 𝜏
𝑖
−1 𝑦 = 𝑘 𝑠 + 𝜏

𝑖
−1 𝑟 + 𝑠 𝑠 + 𝑎 𝑤 

 

𝑦 =
𝑘 𝑠 + 𝜏

𝑖
−1

𝑠2 + 𝑘 + 𝑎 𝑠 + 𝜏
𝑖
−1

𝑟 +
𝑠 𝑠 + 𝑎

𝑘 𝑠 + 𝜏
𝑖
−1

𝑤 

 

 

 

 

1

𝑠 + 𝑎
 𝑘 1 +

1

𝜏𝑖𝑠
 S y r 

u e - + 
S 

w 

𝑠 

Must go to zero 

for constant w! 

Same dynamics 
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Derivative 

• Derivative uses the rate of change of the 

error signal to anticipate control action 

– Increases system damping (when done right) 

– Can be thought of as ‘leading’ the output error, 

applying correction predictively 

– Almost always found with P control* 

*What kind of system do you have if you use D, but don’t care 

about position?  Is it the same as P control in velocity space? 
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Derivative 

• It is easy to see that PD control simply adds 

a zero at 𝑠 = − 1

𝜏
𝑑

  with expected results 

– Decreases dynamic order of the system by 1 

– Absorbs a pole as 𝑘 → ∞ 

• Not all roses, though: derivative operators 

are sensitive to high-frequency noise 

 

𝜔 

𝐶(𝑗𝜔)  

Bode plot of 

a zero 
1
𝜏
𝑑
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PID 

• Collectively, PID provides two zeros plus a 

pole at z = 1 (discrete) or s = 0 (continuous)  

– Zeros provide phase lead 

– Pole provides steady-state tracking 

– Easy to implement in microprocessors 

• Many tools exist for optimally tuning PID 

– Zeigler-Nichols 

– Cohen-Coon 

– Automatic software processes 
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Be alert 

• If gains and time-constants are chosen 

poorly, all of these compensators can induce 

oscillation or instability. 

 

• However, when used properly, PID can 

stabilise even very complex unstable systems 
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Now in discrete 

• Naturally, there are discrete analogs for 

each of these controller types: 

Lead/lag: 
1−𝛼𝑧−1

1−𝛽𝑧−1
 

PID: 𝑘 1 + 
1

𝜏
𝑖
(1−𝑧−1)

+ 𝜏𝑑(1 − 𝑧−1)  

 
Proportional 

Integral 

Derivative 
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Control Design Process 
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Emulation vs Discrete Design 

• Remember: polynomial algebra is the same, 

whatever symbol you are manipulating: 

 eg. 𝑠2+ 2𝑠 + 1 = 𝑠 + 1 2 

  𝑧2 + 2𝑧 + 1 = 𝑧 + 1 2 

Root loci behave the same on both planes! 

• Therefore, we have two choices: 

– Design in the s-domain and digitise (emulation) 

– Design only in the z-domain (discrete design) 
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Emulation design process 

1. Derive the dynamic system model ODE 

2. Convert it to a continuous transfer function 

3. Design a continuous controller 

4. Convert the controller to the z-domain 

5. Implement difference equations in software 

Img(s) 

Re(s) 

Img(s) 

Re(s) 

Img(z) 

Re(z) 
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Emulation design process 

• Handy rules of thumb: 

– Use a sampling period of 20 to 30 times faster 

than the closed-loop system bandwidth 

– Remember that the sampling ZOH induces an 

effective T/2 delay 

– There are several approximation techniques: 

• Euler’s method 

• Tustin’s method 

• Matched pole-zero 

• Modified matched pole-zero 
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Discrete design process 

1. Derive the dynamic system model ODE 

2. Convert it to a discrete transfer function 

3. Design a digital compensator 

4. Implement difference equations in software 

5. Pub 

Img(z) 

Re(z) 

Img(z) 

Re(z) 

Img(z) 

Re(z) 
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Discrete design process 

• Handy rules of thumb: 

– Sample rates can be as low as twice the system 

bandwidth (but 20 to 30 for better performance) 

– A zero at 𝑧 = −1 makes the discrete root locus 

pole behaviour more closely match the s-plane 

– Beware “dirty derivatives” 

• 𝑑𝑦 𝑑𝑡  terms derived from sequential digital values  

are called ‘dirty derivatives’ – these are especially 

sensitive to noise! 

• Employ actual velocity measurements when possible 
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Practical Digital Control 
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Practical design lolwut? 

• Make a controller that works… 

– To specification 

– Reliably 

– Affordably 
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The digital approximation 

• Recall that digital controllers synthesize the 

response of a continuous system 

H(s) 
Difference 

equations 
S 

y(t) r(t) u(t) e(kT) 

- 

+ 

r(kT) 

ADC 

u(kT) 

y(kT) 

DAC 

H(s) C(s) S y(t) r(t) 
u(t) e(t) 

- 

+ 
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Effect of changing T 

• As T is increased, the location of poles (and 

zeros!) tracks isoclines of the z-plane 
Img(z) 

Re(z) 

Root locus in 

increasing T 

More oscillation, 

harder to control 
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How slow can you go? 

• Answer: it depends! 

– Simply increasing T cannot (on its own) 

destabilise a stable system 

– In practice, increasing T makes meeting 

arbitrary performance goals more difficult 

– A lower bound on T is twice the required input 

tracking bandwidth of the closed-loop system 

 

How closely does your output need to  

match the continuous equivalent? 
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How slow can you go? 

• Generally speaking, the faster you go, the 

better the digital approximation… 

– Closer mapping to the s-plane  

– Closer differentiator implementation 

– But fast hardware is more expensive – slower 

sample time gives more processing time 

between successive outputs 

 

Also, why does small T put all the poles near the origin? 
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Causality 

A quick note on causality: 

• Calculating the “(k+1)th” value of a signal using 
 

𝑦 𝑘 + 1 = 𝑥 𝑘 + 1 + 𝐴𝑥 𝑘 − 𝐵𝑦 𝑘  

 

relies on also knowing the next (future) value of x(t). 
(this requires very advanced technology!) 

 

• Real systems always run with a delay: 

𝑦 𝑘 = 𝑥 𝑘 + 𝐴𝑥 𝑘 − 1 − 𝐵𝑦 𝑘 − 1   

current values future value 
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Disturbance rejection 

• Controllers must also reject disturbances 

introduced into the system 

• Recall: 

𝑦 =
𝑘𝐶𝑛𝐻𝑛

𝑘𝐶𝑛𝐻𝑛 + 𝐶𝑑𝐻𝑑 
𝑟 +

𝐶𝑑𝐻𝑑

𝑘𝐶𝑛𝐻𝑛

𝑤 

 

 

 

 

 

w is attenuated by high-frequency roll-off of (CH)-1 

𝐻 𝐶 S r 
u e - + 

S 

w 

y 
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Note on ‘improper’ controllers 

• Systems with numerators of higher order 

than the denominator are ‘improper’ 

– They are inherently non-causal 

– Eg. derivative control 
 

• Problem for controllers: PID is improper 

– Fasts poles added to the controller can balance 

dynamic order, but can effect response/stability 

(and still assumes instant computation) 

– Better to use a velocity measurement if possible 
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Noise and filtering 

• What if you don’t have a velocity sensor?  

What if you have to use a dirty derivative? 

• HF noise is amplified by digital zeros 

– Ditto continuous controllers, but analog parts 

have non-idealities that cause roll-off 

• However, sub-sampled noise can be aliased 

into the dynamic range of the system 
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Noise and filtering 

• Use an analog-prefilter: 

 

 

 

 

• Configure the roll-off of F(s) to be slightly 

below the sampling Nyquist frequency 

– Be careful – too much lower risks effecting the 

closed-loop system dynamics 

H(s) 
Difference 

equations 
S 

r(t) u(t) e(kT) 

- 

+ 

r(kT) 

ADC 

u(kT) 

y(kT) 

DAC 

F(s) 
sensor data 
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Quantisation 

• ADC measurement of voltages to digital 

bytes/words introduces quantisation 

– Higher resolution improves the approximation  

– Large steps can lead to non-linear phenomena 
x 

q 

t 
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Quantisation 

• Fortunately, it’s easy to get good resolution: 

– 8-bit resolution: 0.4% accuracy 

– 12-bit resolution: 0.025% accuracy 

– 16-bit resolution: 1/1000th of a per cent 

• Output quantisation can be smooth with an 

analog filter stage 

– Remember that filters induce delay and must be 

included with the plant for control design! 
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Numerical non-linearity 

• Beware of non-linear effects in fixed-point 

arithmetic in calculations. 

– Integer division remainders are discarded 

– Words have a fixed maximum range 

• Trade-off between precision and range: 
 

u = x*(y/z); //higher dynamic range, but less accurate 

due to rounding 
 

u = (x*y)/z; //more accurate for small x and y, but 

lower dynamic range from saturating (x*y) < word_size 
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Numerical non-linearity 

• Code rounding imprecision can be treated 

like disturbance noise 

– Linear systems theory shows that noise is 

rejected by closed-loop control 

• Dynamic range saturation produces a strong 

non-linearity and should be avoided! 

– Check the maximum possible value of variables 

– Test sanity bounds on variables just-in-case 
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Approximation is the enemy 

• The limiting factor in discrete control is 

how closely the ‘ideal’ continuous response 

can be synthesised 

• For best performance: 

– T -1 above 20x the required system bandwidth 

– Use high-order discretisation approximations or 

go direct to the z-transform 

– Reduce computational delay (approximate a 

quasi-causal system) 

 

 

 



14 May 2012 

104 

Elec3004 – Signals, Systems and Controls Paul Pounds 

But approximation is your friend 

• With good control design, extremely cheap 

and robust compensators can be built 

• Often times control problems will be a 

consequence of improper filtering or 

insufficiently accurate approximation 

 

Golden rule: Understand your system 
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</assessable> 

 

 

 

 
 

Nothing beyond this point is on the exam. 

Do not pay attention. 

Do not attempt to learn. 

WARNING: Not assessable 
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Introduction to State-Space 
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State-space lolwut? 

• A ‘clean’ way of representing systems 

 

• Easy implementation in matrix algebra 

 

• Simplifies understanding Multi-Input-Multi-

Output (MIMO) systems 
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Affairs of state 

• Introductory brain-teaser: 

– If you have a dynamic system model with 

history (ie. integration) how do you represent 

the instantaneous state of the plant? 

 
Eg. how would you setup a simulation of a step response, mid-step? 

t = 0 
t 

start 
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Introduction to state-space 

• Linear systems can be written as networks 

of simple dynamic elements: 
 

𝐻 = 
𝑠 + 2

𝑠2 + 7𝑠 + 12
=

2

𝑠 + 4
+

−1

𝑠 + 3
 

S   
1
𝑠
   

1
𝑠
 S 

−7 

1 

−12 

2 

S 

u y 
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Introduction to state-space 

• We can identify the nodes in the system 

– These nodes contain the integrated time-history 

values of the system response 

– We call them “states” 
 

S   
1
𝑠
   

1
𝑠
 S 

−7 

1 

−12 

2 

S 

u y 
x1 x2 
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Linear system equations 

• We can represent the dynamic relationship 

between the states with a linear system: 
 

 𝑥1  = −7𝑥1 − 12𝑥2  +   𝑢 

 𝑥2  =      𝑥1 +   0𝑥2 + 0𝑢 
 

  𝑦  =      𝑥1 +   2𝑥2 + 0𝑢 
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State-space representation 

• We can write linear systems in matrix form: 

 𝒙  =
−7 12
1 0

𝒙 +
1
0
𝑢 

 𝒚  = 1 2 𝒙 + 0𝑢 

 

Or, more generally: 

𝒙 = 𝐀𝒙 + 𝐁𝑢 

𝑦 = 𝐂𝒙 + 𝐷𝑢 

 

“State-space 

equations” 
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State-space representation 

• State-space matrices are not necessarily a 

unique representation of a system 

– There are two common forms 

• Control canonical form 

– Each node – each entry in x – represents a state 

of the system (each order of s maps to a state) 

• Modal form 

– Diagonals of the state matrix A are the poles 

(“modes”) of the transfer function 
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Control canonical form 

• CCF matrix representations have the 

following structure: 

 
−𝑎1 −𝑎1 ⋯ −𝑎𝑛−2 −𝑎𝑛−1 −𝑎𝑛
1 0 0 0 0
0 1
⋮ ⋱ ⋮

1 0 0
0 0 ⋯ 0 1 0

 

Pretty diagonal! 



14 May 2012 

115 

Elec3004 – Signals, Systems and Controls Paul Pounds 

State variable transformation 

• Important note! 

– The states of a control canonical form system 

are not the same as the modal states 

– They represent the same dynamics, and give the 

same output, but the vector values are different! 

• However we can convert between them: 

– Consider state representations, x and q where 

x = Tq 
 

T is a “transformation matrix” 
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State variable transformation 

• Two homologous representations: 

and 
 

We can write: 
𝒙 = 𝐓𝒒 = 𝐀𝐓𝒛 + 𝐁𝑢 

𝒒 = 𝐓−𝟏𝐀𝐓𝒛 + 𝐓−𝟏𝐁𝑢 

Therefore, 𝐅 = 𝐓−𝟏𝐀𝐓 and 𝐆 = 𝐓−𝟏𝐁 

Similarly, 𝐂 = 𝐇𝐓 and 𝐷 = 𝐽  

𝒙 = 𝐀𝒙 + 𝐁𝑢 

𝑦 = 𝐂𝒙 + 𝐷𝑢 

𝒒 = 𝐅𝒒 + 𝐆𝑢 

𝑦 = 𝐇𝒒 + 𝐽𝑢 
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Controllability matrix 

• To convert an arbitrary state representation 

in F, G, H and J to control canonical form 

A, B, C and D, the “controllability matrix” 

𝓒 = 𝐆 𝐅𝐆     𝐅2𝐆 ⋯ 𝐅𝑛−1𝐆  

must be nonsingular. 

 

>deep think< 

 

Why is it called the “controllability” matrix? 
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Controllability matrix 

• If you can write it in CCF, then the system 

equations must be linearly independent.  

 

• Transformation by any nonsingular matrix 

preserves the controllability of the system. 

 

• Thus, a nonsingular controllability matrix 

means x can be driven to any value. 
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Kind of awesome 

• The controllability of a system depends on 

the particular set of states you chose 

 

• You can’t tell just from a transfer function 

whether all the states of x are controllable 

 

• The poles of the system are the Eigenvalues 

of F, (𝑝𝑖). 
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State evolution 

• Consider the system matrix relation: 
𝒙 = 𝐅𝒙 + 𝐆𝑢 

𝑦 = 𝐇𝒙 + 𝐽𝑢 
 

The time solution of this system is: 

𝒙 𝑡 = 𝑒𝐅 𝑡−𝑡0 𝒙 𝑡0 + = 𝑒𝐅 𝑡−𝜏 𝐆𝑢 𝜏 𝑑𝜏
𝑡

𝑡0

 

 

If you didn’t know, the matrix exponential is: 

𝑒𝐊𝑡 = 𝐈 + 𝐊𝑡 +
1

2!
𝐊2𝑡2 +

1

3!
𝐊3𝑡3 +⋯ 
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Stability 

• We can solve for the natural response to 

initial conditions 𝒙𝟎: 

𝒙 𝑡 = 𝑒𝑝𝑖𝑡𝒙0 

∴ 𝒙 𝑡 = 𝑝𝑖𝑒
𝑝𝑖𝑡𝒙0 = 𝐅𝑒𝑝𝑖𝑡𝒙0 

 

Clearly, a system will be stable provided  
eig 𝐅 < 0 

 



14 May 2012 

122 

Elec3004 – Signals, Systems and Controls Paul Pounds 

Characteristic polynomial 

• From this, we can see 𝐅𝒙0 = 𝑝𝑖𝒙0   

or, (𝑝𝑖I − 𝐅)𝒙0 = 0 

which is true only when det(𝑝𝑖I − 𝐅)𝒙0 = 0 

Aka. the characteristic equation! 

 

• We can reconstruct the CP in s by writing: 

det(𝑠I − 𝐅)𝒙0 = 0 
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Great, so how about control? 

• Given 𝒙 = 𝐅𝒙 + 𝐆𝑢, if we know 𝐅 and 𝐆, we can 

design a controller 𝑢 = −𝐊𝒙 such that 

eig 𝐅 − 𝐆𝐊 < 0 

 

• In fact, if we have full measurement and control of 

the states of 𝒙, we can position the poles of the 

system in arbitrary locations! 

 

Of course, that never happens in reality. 
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Example: PID control 

• Consider a system parameterised by three 

states: 𝑥1, 𝑥2, 𝑥3 where 𝑥2 = 𝑥 1 and 𝑥3 = 𝑥 2 

𝒙 =
1

1
−2

𝒙 − 𝐊𝑢 

𝑦 =  0 1 0 𝒙 + 0𝑢 

𝑥2is the output state of the system; 𝑥1is the 

value of the integral; 𝑥3 is the velocity. 
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• We can choose 𝐊 to move the eigenvalues 

of the system as desired: 

det

1 − 𝐾1
1 −𝐾2

−2 − 𝐾3

= 𝟎 

All of these eigenvalues must be positive. 

 

It’s straightforward to see how adding derivative 

gain 𝐾3 can stabilise the system.  
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Discrete State-Space 



14 May 2012 

127 

Elec3004 – Signals, Systems and Controls Paul Pounds 

Discretisation FTW! 

• We can use the time-domain representation 

to produce difference equations! 
 

𝒙 𝑘𝑇 + 𝑇 = 𝑒𝐅𝑇 𝒙 𝑘𝑇 +  𝑒𝐅 𝑘𝑇+𝑇−𝜏 𝐆𝑢 𝜏 𝑑𝜏
𝑘𝑇+𝑇

𝑘𝑇

 

Notice 𝒖 𝜏  is not based on a discrete ZOH input, 

but rather an integrated time-series. 

We can structure this by using the form: 

𝑢 𝜏 = 𝑢 𝑘𝑇 , 𝑘𝑇 ≤ 𝜏 ≤ 𝑘𝑇 + 𝑇  
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Discretisation FTW! 

• Put this in the form of a new variable: 

𝜂 = 𝑘𝑇 + 𝑇 − 𝜏 

Then: 

𝒙 𝑘𝑇 + 𝑇 = 𝑒𝑭𝑇𝒙 𝑘𝑇 +  𝑒𝑭𝜂𝑑𝜂
𝑘𝑇+𝑇

𝑘𝑇

𝑮𝑢 𝑘𝑇  

 

Let’s rename 𝚽 = 𝑒𝑭𝑇 and 𝚪 =  𝑒𝑭𝜂𝑑𝜂
𝑘𝑇+𝑇

𝑘𝑇
𝑮 
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Discrete state matrices 

So, 
𝒙 𝑘 + 1 = 𝚽𝒙 𝑘 + 𝚪𝑢 𝑘  

 𝑦 𝑘 = 𝐇𝒙 𝑘 + 𝐉𝒖 𝑘  
 

Again, 𝒙 𝑘 + 1  is shorthand for 𝒙 𝑘𝑇 + 𝑇  

 

Note that we can also write 𝚽 as: 

𝚽 = 𝐈 + 𝐅𝑇𝚿 

where 

𝚿 = 𝐈 +
𝐅𝑇

2!
+
𝐅2𝑇2

3!
+ ⋯ 
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Simplifying calculation 

• We can also use 𝚿 to calculate 𝚪 

– Note that: 

Γ =  
𝐅𝑘𝑇𝑘

𝑘 + 1 !
𝑇𝐆 

∞

𝑘=0

 

 = 𝚿𝑇𝐆 

𝚿 itself can be evaluated with the series: 

𝚿 ≅ 𝐈 +
𝐅𝑇

2
𝐈 +

𝐅𝑇

3
𝐈 +⋯

𝐅𝑇

𝑛 − 1
𝐈 +

𝐅𝑇

𝑛
 



14 May 2012 

131 

Elec3004 – Signals, Systems and Controls Paul Pounds 

State-space z-transform 

We can apply the z-transform to our system: 

𝑧𝐈 − 𝚽 𝑿 𝑧 = 𝚪𝑈 𝑘  
𝑌 𝑧 = 𝐇𝑿 𝑧  

 

which yields the transfer function: 
𝑌 𝑧

𝑿(𝑧)
= 𝐺 𝑧 = 𝐇 𝑧𝐈 − 𝚽 −𝟏𝚪 
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State-space control design 
• Design for discrete state-space systems is 

just like the continuous case. 

– Apply linear state-variable feedback: 

𝑢 = −𝐊𝒙 

such that  det(𝑧𝐈 − 𝚽 + 𝚪𝐊) = 𝛼𝑐(𝑧) 

where 𝛼𝑐(𝑧) is the desired control characteristic equation 

 

This requires the system controllability matrix 

𝓒 = 𝚪 𝚽𝚪     𝚽2𝚪 ⋯ 𝚽𝑛−1𝚪   to be full-rank. 
 


