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Digital control lolwut? 

Once upon a timeé 

ÅElectromechanical systems were controlled 

by electromechanical compensators 

ïMechanical flywheel governors, capacitors, 

inductors, resistors, relays, valves, solenoids 

(fun!) 

ïBut also complex and sensitive! 
 

ÅHumans developed sophisticated tools for 

designing reliable analog controllers 
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Eg. Early UAV flight control 

[USAF] 

Control 

stuff 

The bit that 

goes óbangô 
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Eg. missile guidance 

[Computer History Museum] [Arnold Reinhold]  
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Computer revolution 

ÅIn the 1950s and 60s very smart people 

developed computerised controllers 

ÅDigital processor implements the control 

algorithm numerically, rather than in 

discrete hardware 

Minuteman ICBM guidance computer components [CHM] 
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Many advantages 

ÅPractical improvement over analog control: 

ïFlexible; reprogrammable to implement 

different control laws for different systems 

ïAdaptable; control algorithms can be changed 

on-line, during operation 

ïInsensitive to environmental conditions; 

 (heat, EMI, vibration, etc) 

ïCompact; handful of components on a PCB 

ïCheap 
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What you already know* 

ÅSignals can be represented by transfer 

functions in the s-domain 
 

ÅRoots of a transfer functionôs denominator 

(poles) indicate the stability of the system 
 

ÅPoles move around under feedback control 

ïFeedback can stabilise an unstable system 
 

*If you have no idea what Iôm talking about, now is the time to mention it. 
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The point 

ÅWhile there are discrete analogues for every 

part of continuous systems theory, there are 

unique and important differences you must 

be familiar with 

 

Virtually every control system you will ever 

use will be a computerised digital controller 
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Digital Control Basics 
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Archetypical control system 

ÅConsider a continuous control system: 

 

 

 

 
 

ÅThe functions of the controller can be 

entirely represented by a discretised 

computer system 

H(s) C(s) S 

plant controller 

y(t) r(t) 
u(t) e(t) 

- 

+ 



14 May 2012 

12 

Elec3004 ï Signals, Systems and Controls Paul Pounds 

Return to the discrete domain 

ÅRecall that continuous signals can be 

represented by a series of samples with 

period T 

x 

t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

x(kT) T 
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Zero Order Hold 

ÅAn output value of a synthesised signal is 

held constant until the next value is ready 

ïThis introduces an effective delay of  T/2 

x 

t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

x 
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Digitisation 

ÅContinuous signals sampled with period T 

Åkth control value computed at tk = kT 

H(s) 
Difference 

equations 
S 

y(t) r(t) u(t) e(kT) 

- 

+ 

r(kT) 

ADC 

u(kT) 

y(kT) 

controller 

sampler 

DAC 
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Digitisation 

ÅContinuous signals sampled with period T 

Åkth control value computed at tk = kT 

H(s) 
Difference 

equations 
S 

y(t) r(t) u(t) e(kT) 

- 

+ 

r(kT) 

ADC 

u(kT) 

sampler 

y(kT) 

controller 

DAC 
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Difference equations 

ÅHow to represent differential equations in a 

computer?  Difference equations! 

ÅThe output of a difference equation system 

is a function of current and previous values 

of the input and output: 
 

ώὸ Ὀὼὸ ȟὼὸ ȟȣȟὼὸ ȟώὸ ȟȣȟώὸ  
 

ïWe can think of x and y as parameterised in k 

Useful shorthand: ὼὸ ḳ ὼὯ Ὥ 
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The Root Locus 
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Quick refresher: the root locus 

ÅThe transfer function for a closed-loop 

system can be easily calculated: 

ώ ὅὌὶ ώ 

ώ ὅὌώὅὌὶ 

Ḉ
ώ

ὶ

ὅὌ

ρ ὅὌ
 

 

H C S 

plant controller 

y 
u e 

- 

+ r 
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Quick refresher: the root locus 

ÅWe often care about the effect of increasing 

gain of a control compensator design: 
ώ

ὶ

ὯὅὌ

ρ ὯὅὌ
 

Multiplying by denominator: 

ώ

ὶ

ὯὅὲὌὲ
ὅὨὌὨ ὯὅὲὌὲ

 

H C S y 
u e 

- 

+ r k 

characteristic 

polynomial 
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Quick refresher: the root locus 

ÅPole positions change with increasing gain 

ïThe trajectory of poles on the pole-zero plot 

with changing k is called the ñroot locusò 

ïThis is sometimes quite complex 

 

 

 

 

 
(In practice youôd plot these with computers) 

Img(s) 

Re(s) 

Increasing k 
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Quick ón dirty guide to root loci 

ÅPole departure asymptotes as ὯᴼЊ are 

determined by pole-zero excess (ὲ ά): 

‌
В В

,‰ὰ  

for ὰ ρȟςȟȣ ὲ ά  

Img(z) 

Re(z) ‌ 

‰ 
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Quick ón dirty guide to root loci 

ÅPole departure/zero arrival angles given by: 

ή‰ В‪ В‰ “ ς“ὰ 

ή‪ В‰ В‪ “ ς“ὰ  

for qth poles or zeros, and for ὰ ρȟςȟȣή 

 Img(z) 

Re(z) 

‰ 
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Quick ón dirty guide to root loci 

ÅDraw the root locus on the real axis to the 

left of an odd number of poles 

ïZeros count as ónegativeô poles 

ÅNow draw the locus to observe the angle 

constraints 
Img(z) 

Re(z) 

‰ 
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Approximation Methods 
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Eulerôs method* 

ÅDynamic systems can be approximatedÀ by 

recognising that: 
 

 

ὼḙ
ὼὯ ρ ὼὯ

Ὕ
 

T 

x(tk) 

x(tk+1) 

*Also known as the forward rectangle rule 

ÀJust an approximation ï more on this later 

ÅAs Ὕᴼπ, approximation 

error approaches 0  
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Eulerôs method 

ÅEuler approximation can produce a system 

z-transform directly 

ÅUse the substitution: 
 

ί
ᾀ ρ

Ὕ
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Tustinôs method 

ÅTustin uses a trapezoidal integration 

approximation (compare Eulerôs rectangles) 

ÅIntegral between two samples treated as a 

straight line: 
όὯὝ  ὼὯ ρ ὼὯ  

Taking the derivative, then z-transform yields: 

 ί  
 

which can be substituted into continuous models 

Ὧ ρὝ 

x(tk) 

x(tk+1) 

ὯὝ 
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Matched pole-zero 

ÅIf ᾀ Ὡ , why canôt we just make a direct 
substitution and go home? 
 

          

ÅKind of! 

ïStill an approximation 

ïProduces quasi-causal system (hard to compute) 

ïFortunately, also very easy to calculate. 
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Matched pole-zero 

ÅThe process: 

1. Replace continuous poles and zeros with 

discrete equivalents: 

ί ὥ       ᾀ Ὡ  
 

2. Scale the discrete system DC gain to match 

the continuous system DC gain 

3. If the order of the denominator is higher than 

the enumerator, multiply the numerator by 

ρ ᾀ  until they are of equal order* 
 

* This introduces an averaging effect like Tustinôs method 
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Modified matched pole-zero 

ÅWeôre prefer it if we didnôt require instant 

calculations to produce timely outputs 

ÅModify step 2 to leave the dynamic order of 

the numerator one less than the denominator 

ïCan work with slower sample times, and at 

higher frequencies 
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Approximation comparison 

ÅWeôve been making a lot of approximations 

ïJust how goods are these approximations? 

ïAs you might expect, it depends on how closely 

T matches the bandwidth of the system 

ïAlso varies by order of the approximation 

 

 Letôs consider the system 

Ὄί    

sampled at 10 Hz 
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Approximation comparison 

ɆὋ ᾀ  
Ȣ

Ȣ  Ȣ
 

ɆὋ ᾀ
Ȣ  Ȣ

Ȣ  Ȣ
 

ɆὋ ᾀ
Ȣ  Ȣ  Ȣ

Ȣ  Ȣ
 

ɆὋ ᾀ
Ȣ  

Ȣ  Ȣ
 

ɆὋ ᾀ  
Ȣ  

Ȣ  Ȣ
 

 
*FOH: First Order Hold ótriangle approximationô 
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Approximation comparison 

 

All approximations give good 

results for ‫ ‫ Ⱦτ  
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Effect of ZOH delay 

ÅRecall the intrinsic time-delay associated 

with ZOH?  What about that? 

ÅThis is the discrete domain; we can model 

the delay exactly: 

Ὃᾀ
ᾀ

ᾀ ρ
שׁ
Ὃί

ί
 

 

This can be thought of a as a step input, followed by an 

immediate negative step one sample time later 
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The z-Transform 
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Coping with complexity 

ÅTransfer functions help control complexity 

ïRecall the Laplace transform: 

flὪὸ ὪὸὩ ὨὸὊί 

where 

flὪὸ ίὊί 

 

 
Is there a something similar for sampled systems? 

H(s) y(t) x(t) 
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The z-transform 

ÅThe discrete equivalent is the z-TransformÀ: 

ὪὯשׁ  ὪὯᾀ Ὂᾀ 

and 

ὪὯשׁ ρ ᾀ Ὂᾀ 

 

 

 
 

Convenient! 
 

ÀThis is not an approximation, but approximations are easier to derive 

F(z) y(k) x(k) 
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The z-transform 

ÅSome useful properties 

ïDelay by ▪ samples: ׁשὪὯ ὲ ᾀ Ὂᾀ 

ïLinear ὥὪὯשׁ : ὦὫὯ  aὊᾀ ὦὋᾀ 

ïConvolution: ׁשὪὯ ὫzὯ  ὊᾀὋᾀ 

 

So, all those block diagram manipulation tools 

you know and love will work just the same! 
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The z-transform 

ÅIn practice, youôll use look-up tables or computer tools (ie. 

Matlab) to find the z-transform of your functions 

 ╕▼ F(kt) ╕◑ 

ρ

ί
 

1 ᾀ

ᾀ ρ
 

ρ

ίς
 

ὯὝ Ὕᾀ

ᾀ ρς
 

ρ

ί ὥ
 

Ὡ  ᾀ

ᾀ Ὡ
 

ρ

ί ὥς
 

ὯὝὩ  ᾀὝὩ

ᾀ Ὡ ς
 

ρ

ίς ὥς
 

ÓÉÎ ὥὯὝ ᾀÓÉÎὥὝ

ᾀς ςÃÏÓὥὝᾀ ρ 
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Final value theorem 

ÅAn important question: what is the steady-

state output a stable system at ὸ Њ? 

ïFor continuous systems, this is found by: 

ÌÉÍ
ᴼ
 ὼὸ ÌÉÍ

ᴼ
 ίὢί 

 

ïThe discrete equivalent is: 

ÌÉÍ
ᴼ
 ὼὯ ÌÉÍ

ᴼ
 ρ ᾀ ὢᾀ 

 

(Provided the system is stable) 
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An example! 

ÅBack to our difference equation: 
ώὯ ὼὯ ὃὼὯ ρ ὄώὯ ρ  

becomes 

ὣᾀ ὢᾀ ὃᾀ ὢᾀ ὄᾀ ὣᾀ  
ᾀ ὄὣᾀ ᾀ ὃὢᾀ 

 

which yields the transfer function: 
 

ὣᾀ

ὢᾀ

ᾀ ὃ

ᾀ ὄ
 

 
Note: It is also not uncommon to see systems expressed as polynomials in ᾀ  
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This looks familiaré 

 

ÅCompare: 

  vs   

 

How are the Laplace and z domain 

representations related? 
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Consider the simplest system 

ÅTake a first-order response: 

Ὢὸ Ὡ ᵼflὪὸ
ρ

ί ὥ
 

ÅThe discrete version is: 

ὪὯὝ Ὡ ᵼׁשὪὯ
ᾀ

ᾀ Ὡ
 

 

The equivalent system poles are related by 
 

ᾀ Ὡ  
 

That sounds somewhat profoundé but what does it mean? 
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The z-Plane and Stability 
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The z-Plane 

Åz-domain poles and zeros can be plotted just 

like s-domain poles and zeros: 

 

 

Img(z) 

Re(z) 
1 

Img(s) 

Re(s) 
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Deep insight #1 

The mapping between continuous and discrete 

poles and zeros acts like a distortion of the plane 

Img(z) 

Re(z) 

Img(s) 

Re(s) 

1 

max frequency 
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The z-Plane 

ÅWe can understand system response by pole 

location in the z-plane 

Img(z) 

Re(z) 
1 

[Adapted from Franklin, Powell and Emami-Naeini] 
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Effect of pole positions 

ÅWe can understand system response by pole 

location in the z-plane 

Img(z) 

Re(z) 
1 

Most like the s-plane 
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Effect of pole positions 

ÅWe can understand system response by pole 

location in the z-plane 

Img(z) 

Re(z) 
1 

Increasing frequency 
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Effect of pole positions 

ÅWe can understand system response by pole 

location in the z-plane 

Img(z) 

Re(z) 
1 

HC SVNT DRACONES 
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Damping and natural frequency 

[Adapted from Franklin , Powell and Emami-Naeini] 

-1.0 -0.8 -0.6 -0.4 0 -0.2 0.2 0.4 0.6 0.8 1.0 

0 

0.2 

0.4 

0.6 

0.8 

1.0 

Re(z) 

Img(z) 

ᾀ Ὡ  where ί ‒‫ Ὦ‫ ρ ‒ 

0.1 
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1 

ς“
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Root loci in the z-plane 

ÅThe mathematics of polynomial algebra are 

the same in both the s-Plane and the z-Plane: 

 eg. ίς ςίρ ί ρς 

  ᾀς ςᾀρ ᾀ ρς 

ïRoots in a locus move in identical ways for 

identical polynomials 

ïWhat changes is the physical interpretation of 

what the location of each pole represents in 

terms of response behaviour 
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z-plane stability 

ÅIn the z-domain, the unit circle is the system 

stability bound 

 

 

Img(z) 

Re(z) 
1 

unit circle 

Img(s) 

Re(s) 
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z-plane stability 

ÅIn the z-domain, the unit circle is the system 

stability bound 

 

 

Img(z) 

Re(z) 
1 

Img(s) 

Re(s) 

N   
N   V  

V  
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z-plane stability 

ÅThe z-plane root-locus in closed loop 

feedback behaves just like the s-plane: 

 

 

Img(z) 

Re(z) 
1 

Img(s) 

Re(s) 

V  
N   ! 
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Deep insight #2 

Gains that stabilise continuous systems can 

actually destabilise digital systems! 

Img(z) 

Re(z) 
1 

Img(s) 

Re(s) 

V  
N   ! 
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Digital Control Design 
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Two classes of control design 

The systemé 

ïIsnôt fast enough 

ïIsnôt damped enough 

ïOvershoots too much 

ïRequires too much control action 

(ñPerformanceò) 

 

ïAttempts to spontaneously disassemble itself 

(ñStabilityò) 
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Recall dynamic responses 

ÅMoving pole positions change system 

response characteristics 

Img(s) 

Re(s) 

N   

ñMore unstableò 

Faster 

More 

Oscillatory 

More damped 

Pure integrator 

— 
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Recall dynamic responses 

ÅDitto the z-plane: 
Img(z) 

Re(z) 

N   

ñMore unstableò 

Faster 

More 

Oscillatory 

Pure integrator 

More damped 

? 
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Specification bounds 

ÅRecall in the continuous domain, response 

performance metrics map to the s-plane: 
Img(s) 

Re(s) 

ί
τȢφ

ὸ
 

ί „ 

Img(s) 

Re(s) 

— ÓÉÎ‒ 

— 

Img(s) 

Re(s) 

ί
ρȢψ

ὸ
 

‫ ί 
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ÅThese map to the discrete domain: 

 

 

 

 

 

 
In practice, youôd use Matlab to plot these, and check that the spec is satisfied 

Discrete bounds 

Img(z) 

Re(z) 

ᾀ Ὡ  

ᾀ 

Img(z) 

Re(z) 

Img(z) 

Re(z) 
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The fundamental control problem 

 

 

The poles are in the wrong place 

 
How do we get them where we want them to be? 
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Recall the root locus 

ÅWe know that under feedback gain, the 

poles of the closed-loop system move 

ïThe root locus tells us where they go! 

ïWe can solve for this analytically* 

 

 

 

 

 
Root loci can be plotted for all sorts of parameters, not just gain! 

 

Img(s) 

Re(s) 

Increasing k 

ρ

ίί ρ
 

-k 
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Dynamic compensation 

ÅWe can do more than just apply gain! 

ïWe can add dynamics into the controller that 

alter the open-loop response 

 

 ρ

ίί ρ
 ί ς 

u -y y 
compensator plant 

ί ς

ίί ρ
 

y -y 
combined system 

Increasing k 

Img(s) 

Re(s) 
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But what dynamics to add? 

ÅRecognise the following: 

ïA root locus starts at poles, terminates at zeros  

 ñHoles eat polesò 

ïClosely matched pole and zero dynamics cancel 

ïThe locus is on the real axis to the left of an odd 

number of poles (treat zeros as ónegativeô poles) 

Img(s) 

Re(s) 
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Common Control Structures 
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Some standard approaches 

ÅControl engineers have developed time-

tested strategies for building compensators 

ÅThree classical control structures: 

ïLead 

ïLag 

ïProportional-Integral-Derivative (PID) 

(and its variations: P, I, PI, PD) 

 

How do they work? 
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Lead/lag compensation 

ÅServe different purposes, but have a similar 

dynamic structure: 
 

Ὀί
ί ὥ

ί ὦ
 

 

Note: 

Lead-lag compensators come from the days when control 

engineers cared about constructing controllers from networks 

of op amps using frequency-phase methods.  These days 

pretty much everybody uses PID, but you should at least 

know what the heck they are in case someone asks. 
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Lead compensation: a < b 

 

 

 
 

ÅActs to decrease rise-time and overshoot 

ïZero draws poles to the left; adds phase-lead 

ïPole decreases noise 

ÅSet a near desired ‫ὲ; set b at ~3 to 20x a 

Img(s) 

Re(s) 

Faster than 

system dynamics 

Slow open-loop 

plant dynamics 

-a -b 
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Lag compensation: a > b 

 

 

 
 

ÅImproves steady-state tracking 

ïNear pole-zero cancellation; adds phase-lag 

ïDoesnôt break dynamic response (too much) 

ÅSet b near origin; set a at ~3 to 10x b 

Img(s) 

Re(s) 

Very slow 

plant 

dynamics 

-a -b 

Close to pole 
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PID 

ÅProportional-Integral-Derivative control is 

the control engineerôs hammer* 

ïFor P,PI,PD, etc. just remove one or more terms 

 #Ó  Ὧρ †Ὠί 

 

 
 

*Everything is a nail 

 

 

Proportional 

Integral 

Derivative 
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PID 

ÅPID control performance is driven by three 

parameters: 

ɀὯ: system gain 

ɀ†Ὥ: integral time-constant 

ɀ†Ὠ: derivative time-constant 

 

Youôre already familiar with the effect of gain. 

What about the other two? 
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Integral 

ÅIntegral applies control action based on 

accumulated output error 

ïAlmost always found with P control 

ÅIncrease dynamic order of signal tracking 

ïStep disturbance steady-state error goes to zero 

ïRamp disturbance steady-state error goes to a 

constant offset 

 

Letôs try it! 
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Integral 

ÅConsider a first order system with a constant 

load disturbance, w; (recall as ὸO Њ, ίO π) 

ώ Ὧ
ρ

ί ὥ
ὶ ώ ύ 

ί ὥώ Ὧ ὶ ώ ί ὥύ 

ί Ὧ ὥώ Ὧὶ ί ὥύ 

ώ
Ὧ

ί Ὧ ὥ
ὶ

ί ὥ

ί Ὧ ὥ
ύ 

 

ρ

ί ὥ
 Ὧ S y r 

u e - + 
S 

w 
Steady state gain = a/(k+a) 

(never truly goes away) 
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Now with added integral action 

ώ Ὧ ρ
ρ

†Ὥί

ρ

ί ὥ
ὶ ώ ύ 

 

ώ Ὧ
ί

ί

ρ

ί ὥ
ὶ ώ ύ 

 

ίί ὥώ Ὧί ὶ ώ ίί ὥύ 
 

ίς Ὧ ὥί ώ Ὧί ὶ ίί ὥύ 
 

ώ
Ὧί

ίς Ὧ ὥί
ὶ

ίί ὥ

Ὧί
ύ 

 

 

 

 

ρ

ί ὥ
 Ὧ ρ

ρ

†Ὥί
 S y r 

u e - + 
S 

w 

ί 

Must go to zero 

for constant w! 

Same dynamics 
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Derivative 

ÅDerivative uses the rate of change of the 

error signal to anticipate control action 

ïIncreases system damping (when done right) 

ïCan be thought of as óleadingô the output error, 

applying correction predictively 

ïAlmost always found with P control* 

*What kind of system do you have if you use D, but donôt care 

about position?  Is it the same as P control in velocity space? 
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Derivative 

ÅIt is easy to see that PD control simply adds 

a zero at ί   with expected results 

ïDecreases dynamic order of the system by 1 

ïAbsorbs a pole as ὯᴼЊ 

ÅNot all roses, though: derivative operators 

are sensitive to high-frequency noise 

 

‫ 

ὅὮ‫  

Bode plot of 

a zero 
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PID 

ÅCollectively, PID provides two zeros plus a 

pole at z = 1 (discrete) or s = 0 (continuous)  

ïZeros provide phase lead 

ïPole provides steady-state tracking 

ïEasy to implement in microprocessors 

ÅMany tools exist for optimally tuning PID 

ïZeigler-Nichols 

ïCohen-Coon 

ïAutomatic software processes 
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Be alert 

ÅIf gains and time-constants are chosen 

poorly, all of these compensators can induce 

oscillation or instability. 

 

ÅHowever, when used properly, PID can 

stabilise even very complex unstable systems 
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Now in discrete 

ÅNaturally, there are discrete analogs for 

each of these controller types: 

Lead/lag:  

PID: Ὧρ  †Ὠρ ᾀ   

 
Proportional 

Integral 

Derivative 
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Control Design Process 
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Emulation vs Discrete Design 

ÅRemember: polynomial algebra is the same, 

whatever symbol you are manipulating: 

 eg. ίς ςίρ ί ρς 

  ᾀς ςᾀρ ᾀ ρς 

Root loci behave the same on both planes! 

ÅTherefore, we have two choices: 

ïDesign in the s-domain and digitise (emulation) 

ïDesign only in the z-domain (discrete design) 
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Emulation design process 

1. Derive the dynamic system model ODE 

2. Convert it to a continuous transfer function 

3. Design a continuous controller 

4. Convert the controller to the z-domain 

5. Implement difference equations in software 

Img(s) 

Re(s) 

Img(s) 

Re(s) 

Img(z) 

Re(z) 
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Emulation design process 

ÅHandy rules of thumb: 

ïUse a sampling period of 20 to 30 times faster 

than the closed-loop system bandwidth 

ïRemember that the sampling ZOH induces an 

effective T/2 delay 

ïThere are several approximation techniques: 

ÅEulerôs method 

ÅTustinôs method 

ÅMatched pole-zero 

ÅModified matched pole-zero 
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Discrete design process 

1. Derive the dynamic system model ODE 

2. Convert it to a discrete transfer function 

3. Design a digital compensator 

4. Implement difference equations in software 

5. Pub 

Img(z) 

Re(z) 

Img(z) 

Re(z) 

Img(z) 

Re(z) 
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Discrete design process 

ÅHandy rules of thumb: 

ïSample rates can be as low as twice the system 

bandwidth (but 20 to 30 for better performance) 

ïA zero at ᾀ ρ makes the discrete root locus 

pole behaviour more closely match the s-plane 

ïBeware ñdirty derivativesò 

ɆὨώὨὸϳ  terms derived from sequential digital values  

are called ódirty derivativesô ï these are especially 

sensitive to noise! 

ÅEmploy actual velocity measurements when possible 
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Practical Digital Control 
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Practical design lolwut? 

ÅMake a controller that worksé 

ïTo specification 

ïReliably 

ïAffordably 
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The digital approximation 

ÅRecall that digital controllers synthesize the 

response of a continuous system 

H(s) 
Difference 

equations 
S 

y(t) r(t) u(t) e(kT) 

- 

+ 

r(kT) 

ADC 

u(kT) 

y(kT) 

DAC 

H(s) C(s) S y(t) r(t) 
u(t) e(t) 

- 

+ 
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Effect of changing T 

ÅAs T is increased, the location of poles (and 

zeros!) tracks isoclines of the z-plane 
Img(z) 

Re(z) 

Root locus in 

increasing T 

More oscillation, 

harder to control 
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How slow can you go? 

ÅAnswer: it depends! 

ïSimply increasing T cannot (on its own) 

destabilise a stable system 

ïIn practice, increasing T makes meeting 

arbitrary performance goals more difficult  

ïA lower bound on T is twice the required input 

tracking bandwidth of the closed-loop system 

 

How closely does your output need to  

match the continuous equivalent? 
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How slow can you go? 

ÅGenerally speaking, the faster you go, the 

better the digital approximationé 

ïCloser mapping to the s-plane  

ïCloser differentiator implementation 

ïBut fast hardware is more expensive ï slower 

sample time gives more processing time 

between successive outputs 

 

Also, why does small T put all the poles near the origin? 
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Causality 

A quick note on causality: 

ÅCalculating the ñ(k+1)thò value of a signal using 
 

ώὯ ρ ὼὯ ρ ὃὼὯ ὄώὯ 

 

relies on also knowing the next (future) value of x(t). 
(this requires very advanced technology!) 

 

ÅReal systems always run with a delay: 

ώὯ ὼὯ ὃὼὯ ρ ὄώὯ ρ  

current values future value 



14 May 2012 

95 

Elec3004 ï Signals, Systems and Controls Paul Pounds 

Disturbance rejection 

ÅControllers must also reject disturbances 

introduced into the system 

ÅRecall: 

ώ
ὯὅὲὌὲ

ὯὅὲὌὲ ὅὨὌὨ 
ὶ
ὅὨὌὨ
ὯὅὲὌὲ

ύ 

 

 

 

 

 

w is attenuated by high-frequency roll-off of (CH)-1 

Ὄ ὅ S r 
u e - + 

S 

w 

y 
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Note on óimproperô controllers 

ÅSystems with numerators of higher order 

than the denominator are óimproperô 

ïThey are inherently non-causal 

ïEg. derivative control 
 

ÅProblem for controllers: PID is improper 

ïFasts poles added to the controller can balance 

dynamic order, but can effect response/stability 

(and still assumes instant computation) 

ïBetter to use a velocity measurement if possible 
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Noise and filtering 

ÅWhat if you donôt have a velocity sensor?  

What if you have to use a dirty derivative? 

ÅHF noise is amplified by digital zeros 

ïDitto continuous controllers, but analog parts 

have non-idealities that cause roll-off 

ÅHowever, sub-sampled noise can be aliased 

into the dynamic range of the system 
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Noise and filtering 

ÅUse an analog-prefilter: 

 

 

 

 

ÅConfigure the roll-off of F(s) to be slightly 

below the sampling Nyquist frequency 

ïBe careful ï too much lower risks effecting the 

closed-loop system dynamics 

H(s) 
Difference 

equations 
S 

r(t) u(t) e(kT) 

- 

+ 

r(kT) 

ADC 

u(kT) 

y(kT) 

DAC 

F(s) 
sensor data 
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Quantisation 

ÅADC measurement of voltages to digital 

bytes/words introduces quantisation 

ïHigher resolution improves the approximation  

ïLarge steps can lead to non-linear phenomena 
x 

q 

t 
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Quantisation 

ÅFortunately, itôs easy to get good resolution: 

ï8-bit resolution: 0.4% accuracy 

ï12-bit resolution: 0.025% accuracy 

ï16-bit resolution: 1/1000th of a per cent 

ÅOutput quantisation can be smooth with an 

analog filter stage 

ïRemember that filters induce delay and must be 

included with the plant for control design! 
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Numerical non-linearity 

ÅBeware of non-linear effects in fixed-point 

arithmetic in calculations. 

ïInteger division remainders are discarded 

ïWords have a fixed maximum range 

ÅTrade-off between precision and range: 
 

u = x*(y/z); //higher dynamic range, but less accurate 

due to rounding  
 

u = (x*y)/z; //more accurate for small x and y, but 

lower dynamic range from saturating (x*y) < word_size  
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Numerical non-linearity 

ÅCode rounding imprecision can be treated 

like disturbance noise 

ïLinear systems theory shows that noise is 

rejected by closed-loop control 

ÅDynamic range saturation produces a strong 

non-linearity and should be avoided! 

ïCheck the maximum possible value of variables 

ïTest sanity bounds on variables just-in-case 

 



14 May 2012 

103 

Elec3004 ï Signals, Systems and Controls Paul Pounds 

Approximation is the enemy 

ÅThe limiting factor in discrete control is 

how closely the óidealô continuous response 

can be synthesised 

ÅFor best performance: 

ïT -1 above 20x the required system bandwidth 

ïUse high-order discretisation approximations or 

go direct to the z-transform 

ïReduce computational delay (approximate a 

quasi-causal system) 
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But approximation is your friend 

ÅWith good control design, extremely cheap 

and robust compensators can be built 

ÅOften times control problems will be a 

consequence of improper filtering or 

insufficiently accurate approximation 

 

Golden rule: Understand your system 
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</assessable> 

 

 

 

 
 

Nothing beyond this point is on the exam. 

Do not pay attention. 

Do not attempt to learn. 

WARNING: Not assessable  
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Introduction to State-Space 
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State-space lolwut? 

ÅA ócleanô way of representing systems 

 

ÅEasy implementation in matrix algebra 

 

ÅSimplifies understanding Multi-Input-Multi -

Output (MIMO) systems 
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Affairs of state 

ÅIntroductory brain-teaser: 

ïIf you have a dynamic system model with 

history (ie. integration) how do you represent 

the instantaneous state of the plant? 

 
Eg. how would you setup a simulation of a step response, mid-step? 

t = 0 
t 

start 
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Introduction to state-space 

ÅLinear systems can be written as networks 

of simple dynamic elements: 
 

Ὄ  
ί ς

ί χίρς

ς

ί τ

ρ

ί σ
 

S       S 

χ 

ρ 

ρς 

ς 

S 

u y 
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Introduction to state-space 

ÅWe can identify the nodes in the system 

ïThese nodes contain the integrated time-history 

values of the system response 

ïWe call them ñstatesò 
 

S       S 

χ 

ρ 

ρς 

ς 

S 

u y 
x1 x2 
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Linear system equations 

ÅWe can represent the dynamic relationship 

between the states with a linear system: 
 

 ὼ χὼ ρςὼ   ό 

 ὼ       ὼ    πὼ πό 
 

  ώ        ὼ    ςὼ πό 
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State-space representation 

ÅWe can write linear systems in matrix form: 

 ● 
χ ρς
ρ π

●
ρ
π
ό 

 ◐  ρ ς● πό 

 

Or, more generally: 

● Ἃ● Ἄό 

ώ Ἅ● Ὀό 

 

ñState-space 

equationsò 
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State-space representation 

ÅState-space matrices are not necessarily a 

unique representation of a system 

ïThere are two common forms 

ÅControl canonical form 

ïEach node ï each entry in x ï represents a state 

of the system (each order of s maps to a state) 

ÅModal form 

ïDiagonals of the state matrix A are the poles 

(ñmodesò) of the transfer function 
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Control canonical form 

ÅCCF matrix representations have the 

following structure: 

 
ὥ ὥ Ễ ὥ ὥ ὥ

ρ π π π π
π ρ
ể Ệ ể

ρ π π
π π Ễ π ρ π

 

Pretty diagonal! 



14 May 2012 

115 

Elec3004 ï Signals, Systems and Controls Paul Pounds 

State variable transformation 

ÅImportant note! 

ïThe states of a control canonical form system 

are not the same as the modal states 

ïThey represent the same dynamics, and give the 

same output, but the vector values are different! 

ÅHowever we can convert between them: 

ïConsider state representations, x and q where 

x = Tq 
 

T is a ñtransformation matrixò 
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State variable transformation 

ÅTwo homologous representations: 

and 
 

We can write: 
● ἢ▲ Ἃἢ◑ Ἄό 
▲ ἢ Ἃἢ◑ ἢ Ἄό 

Therefore, ἐ ἢ Ἃἢ and ἑ ἢ Ἄ 

Similarly, Ἅ ἒἢ and Ὀ ὐ  

● Ἃ● Ἄό 

ώ Ἅ● Ὀό 

▲ ἐ▲ ἑό 

ώ ἒ▲ ὐό 
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Controllability matrix 

ÅTo convert an arbitrary state representation 

in F, G, H and J to control canonical form 

A, B, C and D, the ñcontrollability matrixò 

רּ ἑ ἐἑ     ἐἑ Ễ ἐ ἑ 

must be nonsingular. 

 

>deep think< 

 

Why is it called the ñcontrollabilityò matrix? 
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Controllability matrix 

ÅIf you can write it in CCF, then the system 

equations must be linearly independent.  

 

ÅTransformation by any nonsingular matrix 

preserves the controllability of the system. 

 

ÅThus, a nonsingular controllability matrix 

means x can be driven to any value. 
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Kind of awesome 

ÅThe controllability of a system depends on 

the particular set of states you chose 

 

ÅYou canôt tell just from a transfer function 

whether all the states of x are controllable 

 

ÅThe poles of the system are the Eigenvalues 

of F, (ὴ). 
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State evolution 

ÅConsider the system matrix relation: 
● ἐ● ἑό 

ώ ἒ● ὐό 
 

The time solution of this system is: 

●ὸ Ὡἐ ●ὸ Ὡἐ ἑό†Ὠ† 

 

If you didnôt know, the matrix exponential is: 

Ὡἕ ἓ ἕὸ
ρ

ςȦ
ἕὸ

ρ

σȦ
ἕὸ Ễ 
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Stability 

ÅWe can solve for the natural response to 

initial conditions ●: 

●ὸ Ὡ ● 

Ḉ●ὸ ὴὩ ● ἐὩ ● 

 

Clearly, a system will be stable provided  
ÅÉÇἐ π 
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Characteristic polynomial 

ÅFrom this, we can see ἐ● ὴ●   

or, ὴ) ἐ● π 

which is true only when detὴ) ἐ● π 
Aka. the characteristic equation! 

 

ÅWe can reconstruct the CP in s by writing: 

detί) ἐ● π 
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Great, so how about control? 

ÅGiven ● ἐ● ἑό, if we know ἐ and ἑ, we can 

design a controller ό ἕ● such that 

ÅÉÇἐ ἑἕ π 

 

ÅIn fact, if we have full measurement and control of 

the states of ●, we can position the poles of the 

system in arbitrary locations! 

 

Of course, that never happens in reality. 
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Example: PID control 

ÅConsider a system parameterised by three 

states: ὼȟὼȟὼ where ὼ ὼ and ὼ ὼ 

●=
ρ
ρ

ς

● ἕό 

ώ  π ρ π● πό 

ὼis the output state of the system; ὼis the 

value of the integral; ὼ is the velocity. 
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ÅWe can choose ἕ to move the eigenvalues 

of the system as desired: 

ÄÅÔ

ρ ὑ

ρ ὑ

ς ὑ

 

All of these eigenvalues must be positive. 

 

Itôs straightforward to see how adding derivative 

gain ὑ can stabilise the system.  



14 May 2012 

126 

Elec3004 ï Signals, Systems and Controls Paul Pounds 

Discrete State-Space 
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Discretisation FTW! 

ÅWe can use the time-domain representation 

to produce difference equations! 
 

●ὯὝ Ὕ Ὡἐ ●ὯὝ Ὡἐ ἑό†Ὠ† 

Notice ◊† is not based on a discrete ZOH input, 

but rather an integrated time-series. 

We can structure this by using the form: 

ό† όὯὝȟ ὯὝ † ὯὝ Ὕ  
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Discretisation FTW! 

ÅPut this in the form of a new variable: 

– ὯὝ Ὕ † 

Then: 

●ὯὝ Ὕ Ὡ╕●ὯὝ Ὡ╕Ὠ–╖όὯὝ 

 

Letôs rename Ὡ╕  and ᷿ Ὡ╕Ὠ–╖ 
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Discrete state matrices 

So, 
●Ὧ ρ ●Ὧ όὯ 

 ώὯ ἒ●Ὧ ἔ◊Ὧ 
 

Again, ●Ὧ ρ is shorthand for ●ὯὝ Ὕ 

 

Note that we can also write  as: 

ἓ ἐὝ  

where 

ἓ
ἐὝ

ςȦ

ἐὝ

σȦ
Ễ 
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Simplifying calculation 

ÅWe can also use  to calculate  

ïNote that: 

ɜ
ἐὝ

Ὧ ρȦ
Ὕἑ  

 Ὕἑ 

 itself can be evaluated with the series: 

ḙἓ
ἐὝ

ς
ἓ
ἐὝ

σ
ἓ Ễ

ἐὝ

ὲ ρ
ἓ
ἐὝ

ὲ
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State-space z-transform 

We can apply the z-transform to our system: 

ᾀἓ ╧ᾀ ὟὯ 
ὣᾀ ἒ╧ᾀ 

 

which yields the transfer function: 
ὣᾀ

╧ᾀ
Ὃᾀ ἒᾀἓ  
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State-space control design 
ÅDesign for discrete state-space systems is 

just like the continuous case. 

ïApply linear state-variable feedback: 

ό ἕ● 

such that  ÄÅÔᾀἓ ἕ ‌ ᾀ 

where ‌ ᾀ is the desired control characteristic equation 

 

This requires the system controllability matrix 

רּ      Ễ   to be full-rank. 
 


