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Digital controllolwut?

Once upon a ti meé

A Electromechanical systems were controlled
by electromechanical compensators

I Mechanical flywheel governors, capacitors
iInductors, resistors, relays, valves, solenoids

(fun!)
I But alsocomplex and sensitive!

A Humansdeveloped sophisticatedols for
designing reliablanalogcontrollers
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F.2G.76

Eg. Early UAV flight control
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Eg. missile guidance
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Computer revolution

A In the 1950s and 60s very smart people
developed computerised controllers

A Digital processor implements the control
algorithm numerically, rather than in
discrete hardware

6 Minuteman ICBM guidance computer components [CHM]
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Many advantages

A Practical improvement ovemnalogcontrol:

I Flexible; reprogrammable to implement
different control laws for different systems

I Adaptable; control algorithms can be changed
on-line, during operation

I Insensitiveto environmentatonditions;
(heat, EMI, vibrationetc

I Compact, handful of components on a PCB

I Cheap
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What you already know*

A Signals can be represented by transfer
functions in the €lomain

ARoots of a transfer
(poles) indicate the stability of the system

A Polesmovearound under feedback control
I Feedback can stabilise an unstable system

*I'f you have no i dea what |1 06m t al
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The point

A While there are discrete analogues for every
part of continuous systems theory, there are
unique and important differences you must
be familiar with

Virtually every control system you will eve
use will be acomputerisedligital controller



Digital Control Basics
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Archetypical control system
A Consider a continuous control system:
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controller . plant
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|

A The functions of the controller can be
entirely represented by a discretised
computer system

11
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Return to the discrete domain

A Recall that continuous signals can be
represented by a series of samples with
period

X 4 T X(KT)

.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 t
12
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Zero Order Hold

A An output value of a synthesised signal is
held constant until the next value is ready

I This introduces an effective delay @f2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 t
13
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Digitisation
A Continuous signals sampled with peribd
A kth control value computed gt= kT

r(t) : N T Qe(kT) Difference u(kT) u(t) y, (t);
r(kT) % equations DAC | H(s)

:

|

|

|

K
y(KT) DG <——O\O:
sampley

14 controller
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Digitisation
A Continuous signals sampled with peribd
A kth control value computed gt= kT

r(t)! A + < &KT) Difference u(kT) u(H y,(t);
—©° r:(k'l‘);_ equations DAC == H(9)

|
1T |
|
|

K
y(kT) ADC (__O\O:
sampleg

15 controller
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Difference equations

A How to represent differential equations in a
computer? Difference equations!

A The output of a difference equation system
IS a function of current and previous values
of the input and output:

@0) O(o)hd B (o Hho HBhoo )

I We can think ok and y as parameterisedkn
Useful shorthandi(o )k «a(Q Q@

16



The Root Locus
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Quick refresher: the root locus

A The transfer function for a closéalop
system can be easily calculated:
w 00 w
w 0 Ow 0 0Oi
, W 00
i p 00

+ e u

r a<;> 5 C I H ? > Y

controller plant

18
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Quick refresher: the root locus

A We often care about the effect of increasing
gain of a control compensator design:

W ® O
i p ®O
Multiplying by denominator: characteristic
W 0 '@’Q polynomial

i 870, Qo6& o0&

e u
chaH > Y
19




Elec3004 1 Signals, Systems and Controls Paul Pounds 14 May 2012

Quick refresher: the root locus

A Pole positions change with increasing gain
I The trajectory of poles aime polezeroplot

with changingki s cal |l ed t he n
I This Is sometimes gquite complex
Increasingk X 4 Img(s)

x 6 | Re(S)

Y
Vo

. (Il n practice youo6d plot thi
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Qui ck on dirty

A Pole departure asymptotes’@ H-are
determined by poleero excess( ):

B B
| 708
fora phclB & &
Img(2)
X

N
\
\

%x
¢ X > Re@




Elec3004 1 Signals, Systems and Controls Paul Pounds 14 May 2012

Qui ck on dirty

A Pole departure/zero arrival angles given by:
N %o Bl B% “ ¢" «
nr B% B R o

for gt poles or zeros, arfor & phchB N

Img(2)
%o <
X
\l
X > Re@
/ﬂ
X
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Qui ck on dirty

A Draw the root locus on the real axis to the
left of an odd number of poles

iIZeros count as Onegat.

A Now draw the locus to observe the angle

constraints
Img(2)

44
u
/
< )/
/
/

/ —K > Re@

d - £
o - .
\
\
\
A \
P \
\
X

23 <

%0




Approximation Methods
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Eul er s met h

A Dynamic systems can be appromméﬂe}d
recognising that:

X(tk+1) //

. (Q p) 9
: ~

X(t,)

A As YO T1, approximation
error approaches 0

[

*Also known aghe forwardrectanglerule
AJust an aipmoreonthism@mt | on

25
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Eul er s met t

A Euler approximation can produce a system
z-transform directly

A Use the substitution:

Ne

26
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Tusti ndos met

27

A Tustin uses a trapezoidal integration
approxi mation (compa

A Integral between two samples treated as a

straight line: X(te,1) £
o(QY -[a(Q p) wQ]

Taking the derivative, thentzansform yields:

X(t,)

which can be substituted into continuous models
'?'Q p uY ’?‘QUY
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Matched polezero

Afa Q, why candét we |
substitution and go home?

_ —[>—
AKind of!

I Still anapproximation
I Produces guasiausal system (hard to compute)
I Fortunately, also very easy to calculate.

28
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Matched polezero

A The process:

1. Replace continuous poles and zeros with
discrete equivalents:

i O a Q
2. Scale the discrete system DC gain to match

the continuous system DC gain

3. If the order of the denominator is higher than
the enumerator, multiply the numerator by
P o until they are of equal order*

29 * This i1 ntroduces an averagin
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Modified matched polzero

AWedre prefer it if w
calculations to produce timely outputs

A Modify step 2 to leave the dynamic order of
the numerator one less than the denominato

I Can work with slower sample times, and at
higher frequencies

30
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Approximation comparison

31

AWedve been making a
I Just how goods are these approximations?

I As you might expect, it depends on how closely
T matches the bandwidth of the system

I Also varies by order of the approximation

Let 06s consi der t he

Oi

sampled at 10 Hz
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Approximation comparison

E O 4 ; 8 ;

E O & 8 } 88

E O (G) 8 ; 8 ; 8
0 (@) ———
o 4

*FOH: First Order Hold otriang
32
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ApprOX|mat|on comparison

Bdng

20

_— H

—— G_zoh

— G_foh
G_tustin

—— G_mpz

20—

All approximations give good \
results for It
120 ' ' e '1;) ' ' e .1} 10°

Frequency (rad/sec)
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Effect of ZOH delay

A Recall the intrinsic timelelay associated
with ZOH? What about that?

A This is the discrete domain: we can model
the delay exactly:

f“ ’ \
|

o) ((:] ’ p) Y |

This can be thought of a as a step input, followed by an
Immediate negative step one sample time later

34



The zTransform
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Coping with complexity

A Transfer functions help control complexity
I Recall theLaplace transform:
fi{"o)} ‘@YQ Qo Qi)

where

(a9l i o

X)) — H(s —— ¥t

Is there a something similar for sampled systems?

36
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Thez-transform

A The discrete equivalent is ted ransforms
w{'@Q} QQa ‘Qq)

and

u{aQ p)} ¢ "aw

Xkl —— F(® — YK

Convenient!

AThis is not an approximation, b
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Thez-transform

A Some useful properties
i Delay by= samplesw{'d'Q &)} a "Qq)
i Linear: W{®SdQ @M} add o @
i Convolution: W{'@Q z"QQ} "dd)"Od

So, all thosdlock diagram manipulation tools
you know and lovevill work just the same!

38
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Thez-transform

Al n pract i c e-uptablescodcomputer oai(l o c
Matlab) to find thez-transform of your functions

3V F (kt) S
p 1 a
i a p
P QY “Ya
ic (@ p)s
P Q d
i a Q
P QWY AYQ
(i s @ Q )
p OEDQY GO E"Y
TR o (CATWM p

39
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Final value theorem

A An important question: what is the steady
state output a stable systenvat H>?

I For continuous systems, this is found by:

| Ed(0) | Eil @)

I The discrete equivalent is:
I EM(Q 1T Ep & wa

(Provided the system is stable)

40
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An example!

A Back to our difference equation:
A(Q o(Q 040 p) 6 dQ p)
becomes
(@ @ oa w@® o0a wa
@ 0wa o 0 Q)

which yields the transfer function:
Wwa o 0

Note It is also not uncommon to see systems expressed as polynongials

41
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Thi s | ooks f a

A Compare:

O e

)

How are the Laplace armbdomain
representations related?

42
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Consider the simplest system

A Take a firstorder response:

a0 o AfE) ——
A The discrete version is:
QY Qo+ vw{@Q} p Q

The equivalent system poles are related by
a Q
That sounds somewhat profou

43



The zPlane and Stability
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Thez-Plane

A z-domain poles and zeros can be plotted just
like ssdomain poles and zeros:

+ Img(s) 4+ Img(2)

X
. Re® i> § - Red)
X

45
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Deep insight #1

The mapping between continuous and discrete
poles and zeros acts like a distortion of the plan

max frequency

T Img(2
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Thez-Plane

A We can understand system response by pole
location in thez-plane

[Adapted from Franklin, Powell and Emami-Naeini]

47 ’: 1 " Re@
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Effect of pole positions

A We can understand system response by pole
location in thez-plane
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Effect of pole positions

A We can understand system response by pole
location in thez-plane

A ]

Increasing frequenc¥'

49 E 1 " Re@
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Effect of pole positions

A We can understand system response by pole
location in thez-plane

MAAMAMA A AN ]

VV VYV VY

HC SVNT DRACONES eV
\/( ]
50 M

Re()
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Damping and natural frequency
a Q wherei 4 N Jp -

Img(2)
10 """" . o
s s RS TN T s
| | - ) |
| | v E 0.1 |
0.8 SO e W= | R A B S
s s 02 FEN |
| P 0.3 BN |
O R e e e b e o [ WAt S bt e
! 0.4 !
! q : ) !
i LY 0.5 i v i
0_4;. ....................................................................... 0.6 ................................ !
: 0.7 : —_—.
! : pm"Y
0.8 ! |
"""""" 09 [ /ol
wibg myY
1 &
' Re@)

1.0 -08 -06 -04 -02 02 04 06 08 10
o1 [Adapted from Franklin , Powell andEmami-Naeini]
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Root loci inthe zplane

A The mathematics gfolynomial algebrare
the same In both theRane and the-Plane:

egic ¢t p (i p)S
o« cap (@ p)
I Roots in a locus move in identical ways for

iIdentical polynomials

I Whatchanges is the physical interpretation of
what the location of each pole represents in
terms of respondeehaviour

52

Paul Pounds 14 May 2012
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Z-plane stability

A In thez-domain, the unit circle is the system
stability bound

+ Img(s) 4+ Img(2)

>< N
. Re® jlt Re®)

unit circle

53
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Z-plane stability

A In thez-domain, the unit circle is the system
stability bound

A Img(S) A |mg(Z) N

.| N / \
. Re® 2 - Red)
X

54
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Z-plane stability

A The zplane rootlocus in closed loop
feedback behaves just like thglane:

4 Img(s) 4 Img(z) I
P B P x 8

- Re® - Re@

55
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Deep Insight #2

Gains that stabilise continuous systems can
actuallydestabilisedigital systems!

4+ Img(s) + Img(2)

I -
-
-
-
-’
.,
v
N u ’
7
’
7
4
/7
7
1
1
1

> Ref) i X—— Re()

X

56



Digital Control Design
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Two classes of control design

The systeme
Ilsnot fast enough
Il snot damped enough
I Overshoots too much
I Requires too much control action
(APerfor manceo)

I Attempts to spontaneously disassemble itself
(AStabilityo)

58
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Recall dynamic responses

A Moving pole positions change system
response characteristics

More
Oscillatory

1 img(9

N/
N

-~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~
~ —
~
~
ES
~
~

g %—3>— Re@
& Pure integrato AMore unstabl ec

More damped

Faster €<

\/
7\

59

—



Elec3004 1 Signals, Systems and Controls Paul Pounds 14 May 2012

Recall dynamic responses

A Ditto the zplane:

Img(2) More
1 Oscillatory N

More damped}(
/:'/ — - \Pure integrator
T2 F—<—X X > Re@)
N~ — Faster

1
\ 1
\ 1
\ 7
\ 1
\ 7
AY /7
\ 4
\ ’
AY 4
Y 4
N 7’
N 7’
: ‘ n M
. ‘ n or e uns a
~ 4
N p
N p
. .
~ 7’
< .
< -
N 3
N
/ - @( \
S

60
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Specification bounds

A Recall in the continuous domain, response
performance metrics map to thglane:

4 Img(s) 4 Img(s) 4 Img(s)

| Re® Re® Re®

P&y ;1@ — OEIL

61
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Discrete bounds

A These map to the discrete domain:

s+ Img(2) +  Img(2) 4 Img(2)

S~

S~

|l n pr act i Malabtoyplot thése, and sheck that the spec is satisfied

62
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The fundamental control problem

The poles are In the wrong place

How do we get them where we want them to be?

63
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Recall the root locus

A We know that under feedback gain, the
poles of the closetbop system move

I The root locus tells us where they go!

I We can solve for this analytically*
Increasindk X 4 |mg(s)

P
i p

—

Root loci can be plotted for all sorts of parameters, not just gain!

>

X 3K » Re@d)

Y
A

64
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Dynamic compensation

A We can do more than just apply gain!

I We can add dynamics into the controller that
alter the opettoop response

compensator plant

- u
RN . (L A t Imo(s
I 1 p
v - Re()
Increasingk
combined system
B4 I« y
> — pr—
L1 p

65
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But what dynamics to add?

A Recognise the following:
I A root locus starts at poles, terminates at zeros
NnHol es eat pol eso
I Closely matched pole and zero dynamics cancel

I The locus is on the real axis to the left of an odd
number of poles (treat

t Img(s)

@ (I

66



Common Control Structures
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Some standard approaches

A Control engineers have developed time
tested strategies for building compensators

A Three classical control structures:
I Lead
I Lag
I ProportionalintegratDerivative (PID)
(and its variations: P, I, Pl, PD)

How do they work?

68
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Lead/lag compensation

69

A Serve different purposes, but have a similar

dynamic structure:
SN I
T3

Note:

Leadlag compensators come from the days when control
engineers cared about constructing controllers from networks
of op amps using frequen@hase methods. These days
pretty much everybody uses PID, but you should at least
know what the heck they are in case someone asks.
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Lead compensatio<b

Faster than
system dynamics 4 Img(s)

o ><v\

o O

<) » Re(s
rw;\\ ©
Slow openloop
plant dynamics

A Acts to decrease rigegme and overshoot
I Zero draws poles to the left; adds phbessd
I Pole decreases noise

A Seta near desired ; setbat ~3 to 2@ a

70
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Lag compensatiora> b

Very slow

Close to pole\\

e 534 Re@)
-a -b

plant
dynamics

4 Img(s)

A Improves steadsgtate tracking
I Near polezerocancellation; adds phasag
I Doesnodot break dynamic

A Setb near origin; sed at ~3 to 1& b

71
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PID
A ProportionalintegratDerivative control is
t he control englineer

I For P,PI,PDetc.just remove one or moterms

~d

#O dp — td)
LR
Proportional —JJ

Integral
Derivative

*Everythingis analil

72
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PID

A PID control performance is driven by three
parameters:
Z 'Q system gain
Z T integral timeconstant
{ to derivative timeconstant

Y o u already familiamwith the effect of gain.
What about the other two?

73
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Integral

A Integral applies control action based on
accumulated output error

I Almostalways found with P control

A Increasalynamic order of signafacking
I Step disturbance steagiate error goe® zero

I Ramp disturbance steagVate error goes to a
constant offset

Let 0s try It/

74
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Integral

A Consider a first order system with a constant

load disturbancey; (recall a0© H, 1 © 1)
P

w Q——1 w U
| (0))

, Q. i o

(D ’ iy e l ’ iy r U

I Q W | Q W
Steady state gain = &#a) \J

(never truly goes away) W

+ - € u 0

r 0 — y
| @
75
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Now with added integral action

___________

Same dynamics

for constant! wW

+ - € u
r—)§—)7f<p p) —> L y
T4 [
76
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Derivative

A Derivative uses the rate of change of the
error signal to anticipate control action
I Increases system damping (when done right)
ifCan be thought of as ¢
applying correction predictively
I Almost always found with P control*

*What kind of system do you
about position? Is it the same as P control in velocity space?

77
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Derivative

Alt is easy to see that PD control simply adds
a zero at — with expected results

I Decreases dynamic order of the system by 1
i Absorbs a pole a&° H

A Not all roses, though: derivative operators
are sensitive to higfrequency noise

60 | ¢ /

Bode plot of | -
a zero T

78
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PID

A Collectively, PID provides two zeros plus a
pole at z= 1 (discrete) or s = 0 (continuous)
I Zeros provide phase lead
I Pole provides steaestate tracking
I Easy to implement in microprocessors

A Many tools exist for optimally tuning PID
I ZeiglerNichols
I CohenCoon
I Automatic software processes

79
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Be alert

A If gains and timeconstants are chosen
poorly, all of these compensators can induce
oscillation or instability.

A However, when used properly, PID can
stabilise even very complex unstable system

80
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Now In discrete

A Naturally, there are discretmaloggor
each of these controller types:

Lead/lag:
PID:  Ap top & )
\_Y_) \ Y ) | J
Proportional _J J
Integral

Derivative

81
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Emulationvs Discrete Design

A Remember: polynomial algebra is the same,
whatever symbol you are manipulating:
egic ¢i p (@ p)S
“ cap (@ p)*
Root loci behave the same on both planes!
A Therefore, we have two choices:
I Design in the glomain and digitise (emulation)

I Design only in the-lomain (discrete design)

83
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Emulation design process

gk WNhPE

Derive the dynamic system model ODE
Convert it to a continuous transfer function
Design a continuous controller

Convert the controller to thedomain
Implement difference equations in software

4 Img(s) » Img(9 4 Img(@)

84
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Emulation design process

A Handy rules of thumb:

I Use a sampling perioaf 20 to 30 times faster
than theclosedloop systenbandwidth

I Remembethat the samplingOH induces an
effectiveT/2 delay

I There are several approximation techniques:
AEul er 6s met hod
ATustindéds met hod
AMatched polezero
AModified matched poleero

85
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Discrete design process

. Derive the dynamic system model ODE
. Convert it to aiscretetransfer function
Design adigital compensator
mplementdifference equations isoftware

gk WNhPE
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Discrete design process

A Handy rules of thumb:

I Sample rates can be as low as twice the system
bandwidth (but 20 to 30 for better performance)

i A zero at P makes the discrete root locus
pole behaviour more closely match thplane
i Beware ndirty deri vat |

£ Q ¢Q derms derived from sequential digital values

are call ed oidhese trg espgeeallyy v a
sensitive to noise!

AEmploy actual velocity measurements when possible

87



Practical Digital Control
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Practical desigiolwut?

AMake a controller th
I To specification
I Reliably
I Affordably

89



Elec3004 1 Signals, Systems and Controls Paul Pounds 14 May 2012

The digital approximation

A Recall that digital controllers synthesize the
response of a continuous system

r(t) _t@ﬁﬂ C(9) o, H(s) > Y

— =

"(®) + —8KT) pifterence| UKT) u(t) y(t)
—o\;@?— o DA | WO T
y(kT) NG

ADC
90
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Effect of changing

A As Tis increased, the location of poles (and
zeros!) tracks isoclines of thepzane

Img(2)

Root locus In
Increasingl

More oscillation,/
harder to controll/

| Re@
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How slow can you go?

A Answer: it depends!
I Simply increasing cannot (on its own)
destabilisea stable system

I In practice, increasing makesmeeting
arbitrary performancgoalsmoredifficult

I A lower bound orT is twice therequiredinput
trackingbandwidth of the closelbop system

How closely does your output need to

match the continuous equivalent?
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How slow can you go?

A Generally speaking, the faster you go, the
better the digital a
I Closer mapping to the@ane
I Closer differentiator implementation

I But fast hardware is more expensivsiower
sample time gives more processing time
between successive outputs

Also, why does small put all the poles near the origin?
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Causality

A quick note on causality:
ACal cul ak#liingg v dleudi(of a
0Q p) «(Q p) 649 69

Y |
future value current values

relies on also knowing the next (future) value(@.
(this requires very advanced technology!)

A Real systems always run with a delay:

QY wQ 6QQ p) 6 dQQ p)
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Disturbance rejection

A Controllers must also reject disturbances
Introduced Into the system

A Recall: )
O ®.Q . 00Q,

T — 7=——0U
06Q 6 Q0Q B.Q

W

+ - € u
I‘—)@—) 0 —_— O y

w is attenuated by higfrequency roHoff of (CH)1
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Note on OI mpr of

A Systems with numerators of higher order
t han the denominator

I They are inherently neoausal
I Eg. derivative control

A Problem for controllers: PID is improper

I Fasts poles added to the controller can balance
dynamic order, but can effect response/stability
(and still assumes instant computation)

| Better to use a velocity measurement if possible
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Noise and filtering

AWhat i f you dondét ha
What Iif youhaveto use a dirty derivative?

A HF noise is amplified by digital zeros

I Ditto continuous controllers, but analog parts
have noAdealities that cause rediff

A However, sussampled noise can be aliased
Into the dynamic range of the system

AAAANAN
. VUVUVV T
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Noise and filtering

A Use an analogrefilter:

r(t) + KN piterence UK u(t)
—oﬁ?— o DA | WO T
y(KT) PR N 9

ADC
sensor data

A Configure the roHoff of F(s) to be slightly
below the samplin@llyquistfrequency

I Be carefuli too much lower risks effecting the
closedloop system dynamics
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Quantisation

A ADC measurement of voltages to digital
bytes/words introduceguantisation

I Higher resolution improves the approximation
I Large steps can lead to nrbnear phenomena
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Quantisation

AFortunately, itods ea
I 8-bit resolution: 0.4% accuracy
I 12-bit resolution: 0.025% accuracy
i 16-bit resolution: 1/10000of a per cent

A Outputquantisatiorcan be smooth with an
analog filter stage

I Remember that filters induce delay and must be
iIncluded with the plarfor control desigh
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Numerical noAinearity

A Bewareof nonlinear effects in fixeepoint
arithmetic in calculations

I Integer division remainders are discarded
I Words have a fixed maximum range

A Tradeoff between precision and range:

u = x*(y/z); //higher dynamic range, but less accurate
due to rounding

u = (x*y)/z; //more accurate for small x and y, but
lower dynamic range from saturating (x*y) < word_size
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Numerical noAinearity

A Code rounding imprecision can be treated
like disturbance noise

I Linear systems theory shows that noise is
rejected by closetbop control

A Dynamic range saturation produces a strong
nonlinearity and should be avoided!

I Check the maximum possible value of variables
I Test sanity bounds on variables jusicase
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Approximation is the enemy

A The limiting factor in discrete control is
how cl osely the 01 de
can besynthesised

A For best performance:

i T-1above20x therequired system bandwidth

I Use highorderdiscretisatiorapproximations or
go direct to thearansform

I Reduce computational delay (approximate a
guastcausal system)
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But approximation is your friend

A With good control design, extremely cheap
and robust compensators can be built

A Often times control problems will be a
consequence of improper filtering or
iInsufficiently accurate approximation

Golden rule: Understand your system
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</assessable>

V A 4 4 4 4 4 4 & 4 /4

WARNING: Not assessable
Ve WYYy 4

Nothing beyond this point is on the exam.
Do not pay attention.
Do not attempt to learn.
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Statespacdolwut?

AA 6cl eand way of rep
A Easy implementation in matrix algebra

A Simplifies understanding Multnput-Multi -
Output (MIMO) systems
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Affairs of state

A Introductory brairteaser:

I If you have a dynamic system model with
history (e. integration) how do you represent
the instantaneous state of the plant?

Eg. how would you setup a simulation of a step responsestaf?
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Introduction to stat@space

A Linear systems can be written as networks
of simple dynamic elements:

i
o — = = P
i xi pgci 1t i o©

7P
u ——H—*C%—\y
S

>
A
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Introduction to stat@space

A We can identify the nodes in the system

I These nodes contain the integrated timstory
values of the system response

T We cal l t hem nstateso
> P
X4 X5 %
u _ ea__e_)c y
S X €
P G
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Linear system equations

A We can represent the dynamic relationship
between the states with a linear system:

W XW PCwW O
W W T TTO

W W Cw TO
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Statespace representation

A We can write linear systems in matfiorm:

i A LR LU
' TO

« [p cle

Or, more generally: )
o Ao AO A S t-space

e

W P OO equations
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Statespace representation

A Statespace matrices are not necessarily a
unigue representation of a system

I There are two common forms

A Control canonical form

I Each nodé each entry irx T represents a state
of the system (each order®maps to a state)

A Modal form

I Diagonals of the state matikare the poles
(Amodeso) of the trans
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Control canonical form

A CCF matrix representations have the
following structure:

~
[V 4 [ 4 4 E [ J 4 [V 4 (¥ 4
el
é E\ &
] S~o
~ RN
o~ N

T ety sagonat
Pretty diagonat!
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State variable transformation

A Important note!

I The states of a control canonical form system
are not the same as the modal states

I They represent the same dynamics, and give the
same output, but the vector values are different!

A However we can convert between them:
I Consider state representationgndg where
X=Tq

Ti' s a Ntransfor mat i
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State variable transformation

A Two homologous representations:
o Ao Ao and A SA é’('),
w P 0O W €A UO
We can write:
e NA Amp A
A N Amp n A

Thereforeg i Afande ni A
Similarly,A €¢n andO 0

116



Elec3004 1 Signals, Systems and Controls Paul Pounds 14 May 2012

Controllability matrix

A To convert an arbitrary state representation
In F, G, H andJ to control canonical form
A,B,CandD,t he ncontrol |l a

o~

1 [ €¢ ¢¢ E ¢ ¢
must benonsingular

>deep think<

Why 1 s 1t called the
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Controllability matrix

A If you can write it in CCF, then the system
equations must be linearly independent.

A Transformatiorby anynonsingulamatrix
preserves the controllability of the system

A Thus, anonsingulaicontrollability matrix
meansx can be driven to any value.
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Kind of awesome

A The controllability of a system depends on
the particular set of states you chose

AYou cané6t tell just
whether all the states afare controllable

A The poles of the system are the Eigenvalues
of F, (N ).
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State evolution

A Consider the system matrix relation:
e teo £0
W e W
The time solution of this system is:
o T )e(d) gt DeohQt

| f you didnot know, t he

5 " LG p 14 \ p 14 1 ~
(@3 E €0 — 0 —E 0 E
CA oA
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Stability

A We can solve for the natural response to
Initial conditionse
o(0) Q o
Co® NQ o £0Q e

Clearly, a system will be stable provided
AEQ

121



Elec3004 1 Signals, Systems and Controls Paul Pounds 14 May 2012

Characteristic polynomial

A From this, wecansgs 1 e
or, N) € e Tl

which is true only whendeaj) € e 11
Aka. the characteristic equatica;h!

A We can reconstruct the CP siby writing:
deti) € e TI
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Great, so how about control?

A Givene ¢e £0, if we knowé andé, we can
design a controlled ¢ e such that

AEC €§& 1

A In fact, if we have full measurement and control of
the states o#, we can position the poles of the
system in arbitrary locations!

Of course, that never happens in reality.
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Example: PID control

A Consider a system parameterised by three
statesw hw hw wherew w andw ®
5 N
o= P ® EO0
! ol
W [T p me TO
w is the output state of the systemis the
value of the integrakp is the velocity.
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A We can choosé to move the eigenvalues
of the system agesired:
0
A AO p U

_ ¢ U
All of these eigenvalues must be positive.

| t 0s straightforward to
gainu can stabilise the system.
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DiscretisatiorFTW!

A We can use the timgomain representation
to produce difference equations!

e(QYY G o(QY) [0 eo(HQt

Notice¢ (1) is not based on a discrete ZOH input,
but rather an integrated tinseries.

We can structure this by using the form:
o) oM QYT QVY"Y
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DiscretisatiorFTW!

A Put this in the form of a new variable:
- QY'Y ¢

Then:
o(""Q"Y Yy O o(""Q')Y ( (@) ’Q)-"(')("Q‘)Y

Let 6s r emanhe (T Qg
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Discrete state matrices

So,
e(Q p) o(Q 06(9
A(Q £e(Q &(Q

Again,e("'Q p) is shorthand fos(QY Y

Note that we can also write as:
e &Y
where

: £Y €Y &
CA OA
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Simplifying calculation

A We can also use to calculate
T Note that:

e Y
. N
(Q pA

-
itself can be evaluated with the series:

€Y. €Y. . €Y /. e\)
e € —{e —1e E - (e — ]}
C O E p €

3

130



Elec3004 1 Signals, Systems and Controls Paul Pounds 14 May 2012

Statespace zransform

We can apply the-ransform to our system:
& O M9
) &L

which yields the transfer function:

A qe E@ )

= a
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Statespace control design

A Design for discrete stapace systems is
just like the continuous case.
I Apply linear statevariable feedback:
0 Ee
such thatA A @ E | a
wherg  a is the desired control characteristic equation

This requires the system controllability matrix

=

R E | to be fultrank.
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