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Signals

Signal (electronics)
A signal is any stream of quantities in time or spatial sequence. Signals categorizes to the fields of communications,
signal processing, and to electrical engineering more generally.
Signals may contain and transport information in coded form like modulation. In that case the actual quantities are
finally not used, but are decoded in a detector or demodulator.
In the physical world, any quantity measurable through time or over space can be taken as a signal. Within a
complex society, any set of human information or machine data can also be taken as a signal. Such information or
machine data (for example, the dots on a screen, the ink making up text on a paper page, or the words now flowing
into the reader's mind) must all be part of systems existing in the physical world – either living or non-living.
Despite the complexity of such systems, their outputs and inputs can often be represented as simple quantities
measurable through time or across space. In the latter half of the 20th century, electrical engineering itself separated
into several disciplines, specializing in the design and analysis of physical signals and systems, on the one hand, and
in the functional behavior and conceptual structure of the complex human and machine systems, on the other. These
engineering disciplines have led the way in the design, study, and implementation of systems that take advantage of
signals as simple measurable quantities in order to facilitate the transmission, storage, and manipulation of
information.

Some definitions
Definitions specific to subfields are common. For example, in information theory, a signal is a codified message, that
is, the sequence of states in a communication channel that encodes a message.
In the context of signal processing, arbitrary binary data streams are not considered as signals, but only analog and
digital signals that are representations of analog physical quantities.
In a communication system, a transmitter encodes a message into a signal, which is carried to a receiver by the
communications channel. For example, the words "Mary had a little lamb" might be the message spoken into a
telephone. The telephone transmitter converts the sounds into an electrical voltage signal. The signal is transmitted to
the receiving telephone by wires; and at the receiver it is reconverted into sounds.
In telephone networks, signalling, for example common-channel signaling, refers to phone number and other digital
control information rather than the actual voice signal.
Signals can be categorized in various ways. The most common distinction is between discrete and continuous spaces
that the functions are defined over, for example discrete and continuous time domains. Discrete-time signals are
often referred to as time series in other fields. Continuous-time signals are often referred to as continuous signals
even when the signal functions are not continuous; an example is a square-wave signal.
A second important distinction is between discrete-valued and continuous-valued. Digital signals are sometimes
defined as discrete-valued sequencies of quantified values, that may or may not be derived from an underlying
continuous-valued physical process. In other contexts, digital signals are defined as the continuous-time waveform
signals in a digital system, representing a bit-stream. In the first case, a signal that is generated by means of a digital
modulation method is considered as converted to an analog signal, while it is considered as a digital signal in the
second case.signal transfers information
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Discrete-time and continuous-time signals
If for a signal, the quantities are defined only on a discrete set of times, we call it a discrete-time signal. In other
words, a discrete-time real (or complex) signal can be seen as a function from (a subset of) the set of integers to the
set of real (or complex) numbers.
A continuous-time real (or complex) signal is any real-valued (or complex-valued) function which is defined for all
time t in an interval, most commonly an infinite interval.

Analog and digital signals
Less formally than the theoretical distinctions mentioned above, two main types of signals encountered in practice
are analog and digital. In short, the difference between them is that digital signals are discrete and quantized, as
defined below, while analog signals possess neither property.

Discretization
One of the fundamental distinctions between different types of signals is between continuous and discrete time. In
the mathematical abstraction, the domain of a continuous-time (CT) signal is the set of real numbers (or some
interval thereof), whereas the domain of a discrete-time (DT) signal is the set of integers (or some interval). What
these integers represent depends on the nature of the signal.
DT signals often arise via sampling of CT signaexample, consists of a continually fluctuating voltage on a line that
can be digitized by an ADC circuit, wherein the circuit will read the voltage level on the line, say, every 50
microseconds. The resulting stream of numbers is stored as digital data on a discrete-time signal. Computers and
other digital devices are restricted to discrete time.

Quantization
If a signal is to be represented as a sequence of numbers, it is impossible to maintain arbitrarily high precision - each
number in the sequence must have a finite number of digits. As a result, the values of such a signal are restricted to
belong to a finite set; in other words, it is quantized.

Examples of signals
• Motion. The motion of a particle through some space can be considered to be a signal, or can be represented by a

signal. The domain of a motion signal is one-dimensional (time), and the range is generally three-dimensional.
Position is thus a 3-vector signal; position and orientation is a 6-vector signal.

• Sound. Since a sound is a vibration of a medium (such as air), a sound signal associates a pressure value to every
value of time and three space coordinates. A microphone converts sound pressure at some place to just a function
of time, generating a voltage signal as an analog of the sound signal. Sound signals can be sampled to on a
discrete set of time points; for example, compact discs (CDs) contain discrete signals representing sound,
recorded at 44,100 samples per second; each sample contains data for a left and right channel, which may be
considered to be a 2-vector signal (since CDs are recorded in stereo).

• Images. A picture or image consists of a brightness or color signal, a function of a two-dimensional location. A
2D image can have a continuous spatial domain, as in a traditional photograph or painting; or the image can be
discretized in space, as in a raster scanned digital image. Color images are typically represented as a combination
of images in three primary colors, so that the signal is vector-valued with dimension three.

• Videos. A video signal is a sequence of images. A point in a video is identified by its two-dimensional position
and by the time at which it occurs, so a video signal has a three-dimensional domain. Analog video has one
continuous domain dimension (across a scan line) and two discrete dimensions (frame and line).

http://en.wikipedia.org/w/index.php?title=Real_numbers
http://en.wikipedia.org/w/index.php?title=Complex_numbers
http://en.wikipedia.org/w/index.php?title=Mathematical_function
http://en.wikipedia.org/w/index.php?title=Analog_%28signal%29
http://en.wikipedia.org/w/index.php?title=Digital_%28signal%29
http://en.wikipedia.org/w/index.php?title=Continuous_time
http://en.wikipedia.org/w/index.php?title=Discrete_time
http://en.wikipedia.org/w/index.php?title=Integer
http://en.wikipedia.org/w/index.php?title=Analog-to-digital_converter
http://en.wikipedia.org/w/index.php?title=Microseconds
http://en.wikipedia.org/w/index.php?title=Computer
http://en.wikipedia.org/w/index.php?title=Digital
http://en.wikipedia.org/w/index.php?title=Finite_set
http://en.wikipedia.org/w/index.php?title=Motion_%28physics%29
http://en.wikipedia.org/w/index.php?title=Space
http://en.wikipedia.org/w/index.php?title=Sound
http://en.wikipedia.org/w/index.php?title=Oscillation
http://en.wikipedia.org/w/index.php?title=Pressure
http://en.wikipedia.org/w/index.php?title=Microphone
http://en.wikipedia.org/w/index.php?title=Voltage
http://en.wikipedia.org/w/index.php?title=Compact_disc
http://en.wikipedia.org/w/index.php?title=Second
http://en.wikipedia.org/w/index.php?title=Stereophonic_sound
http://en.wikipedia.org/w/index.php?title=Image
http://en.wikipedia.org/w/index.php?title=Raster_scanning
http://en.wikipedia.org/w/index.php?title=Digital_image
http://en.wikipedia.org/w/index.php?title=Primary_colors
http://en.wikipedia.org/w/index.php?title=Video
http://en.wikipedia.org/w/index.php?title=Scan_line


Signal (electronics) 3

• Biological membrane potentials. The value of the signal is a straightforward electric potential ("voltage"). The
domain is more difficult to establish. Some cells or organelles have the same membrane potential throughout;
neurons generally have different potentials at different points. These signals have very low energies, but are
enough to make nervous systems work; they can be measured in aggregate by the techniques of
electrophysiology.

Entropy
Another important property of a signal (actually, of a statistically defined class of signals) is its entropy or
information content.
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Even and odd functions
In mathematics, even functions and odd functions are functions which satisfy particular symmetry relations, with
respect to taking additive inverses. They are important in many areas of mathematical analysis, especially the theory
of power series and Fourier series. They are named for the parity of the powers of the power functions which satisfy
each condition: the function f(x) = xn is an even function if n is an even integer, and it is an odd function if n is an
odd integer.

Even functions

ƒ(x) = x2 is an example of an even function.

Let f(x) be a real-valued function of a real variable. Then f is even if
the following equation holds for all x in the domain of f:

Geometrically speaking, the graph face of an even function is
symmetric with respect to the y-axis, meaning that its graph remains
unchanged after reflection about the y-axis.

Examples of even functions are |x|, x2, x4, cos(x), and cosh(x).
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Odd functions

ƒ(x) = x3 is an example of an odd function.

Again, let f(x) be a real-valued function of a real variable. Then f is
odd if the following equation holds for all x in the domain of f:

or

Geometrically, the graph of an odd function has rotational symmetry
with respect to the origin, meaning that its graph remains unchanged
after rotation of 180 degrees about the origin.

Examples of odd functions are x, x3, sin(x), sinh(x), and erf(x).

Some facts

ƒ(x) = x3 + 1 is neither even nor odd.

A function's being odd or even does not imply differentiability, or even
continuity. For example, the Dirichlet function is even, but is nowhere
continuous. Properties involving Fourier series, Taylor series,
derivatives and so on may only be used when they can be assumed to
exist.

Basic properties

• The only function which is both even and odd is the constant
function which is equal to zero (i.e., f(x) = 0 for all x).

• The sum of an even and odd function is neither even nor odd, unless
one of the functions is equal to zero over the given domain.

•• The sum of two even functions is even, and any constant multiple of
an even function is even.

•• The sum of two odd functions is odd, and any constant multiple of
an odd function is odd.

• The product of two even functions is an even function.
•• The product of two odd functions is an even function.
•• The product of an even function and an odd function is an odd function.
• The quotient of two even functions is an even function.
•• The quotient of two odd functions is an even function.
•• The quotient of an even function and an odd function is an odd function.
• The derivative of an even function is odd.
•• The derivative of an odd function is even.
• The composition of two even functions is even, and the composition of two odd functions is odd.
•• The composition of an even function and an odd function is even.
•• The composition of any function with an even function is even (but not vice versa).
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• The integral of an odd function from −A to +A is zero (where A is finite, and the function has no vertical
asymptotes between −A and A).

• The integral of an even function from −A to +A is twice the integral from 0 to +A (where A is finite, and the
function has no vertical asymptotes between −A and A).

Series
• The Maclaurin series of an even function includes only even powers.
•• The Maclaurin series of an odd function includes only odd powers.
• The Fourier series of a periodic even function includes only cosine terms.
• The Fourier series of a periodic odd function includes only sine terms.

Algebraic structure
• Any linear combination of even functions is even, and the even functions form a vector space over the reals.

Similarly, any linear combination of odd functions is odd, and the odd functions also form a vector space over the
reals. In fact, the vector space of all real-valued functions is the direct sum of the subspaces of even and odd
functions. In other words, every function f(x) can be written uniquely as the sum of an even function and an odd
function:

where

is even and

is odd. For example, if f is exp, then fe is cosh and fo is sinh.
• The even functions form a commutative algebra over the reals. However, the odd functions do not form an

algebra over the reals.

Harmonics
In signal processing, harmonic distortion occurs when a sine wave signal is sent through a memoryless nonlinear
system, that is, a system whose output at time only depends on the input at time and does not depend on the
input at any previous times. Such a system is described by a response function . The type of
harmonics produced depend on the response function :[1]

• When the response function is even, the resulting signal will consist of only even harmonics of the input sine
wave; 
• The fundamental is also an odd harmonic, so will not be present.
• A simple example is a full-wave rectifier.

• When it is odd, the resulting signal will consist of only odd harmonics of the input sine wave; 
• The output signal will be half-wave symmetric.
• A simple example is clipping in a symmetric push-pull amplifier.

• When it is asymmetric, the resulting signal may contain either even or odd harmonics; 
• Simple examples are a half-wave rectifier, and clipping in an asymmetrical class A amplifier.

http://en.wikipedia.org/w/index.php?title=Integral
http://en.wikipedia.org/w/index.php?title=Maclaurin_series
http://en.wikipedia.org/w/index.php?title=Fourier_series
http://en.wikipedia.org/w/index.php?title=Periodic_function
http://en.wikipedia.org/w/index.php?title=Trigonometric_function
http://en.wikipedia.org/w/index.php?title=Trigonometric_function
http://en.wikipedia.org/w/index.php?title=Linear_combination
http://en.wikipedia.org/w/index.php?title=Vector_space
http://en.wikipedia.org/w/index.php?title=Real_number
http://en.wikipedia.org/w/index.php?title=Direct_sum_of_vector_spaces
http://en.wikipedia.org/w/index.php?title=Linear_subspace
http://en.wikipedia.org/w/index.php?title=Algebra_over_a_field
http://en.wikipedia.org/w/index.php?title=Signal_processing
http://en.wikipedia.org/w/index.php?title=Harmonic_distortion
http://en.wikipedia.org/w/index.php?title=Sine_wave
http://en.wikipedia.org/w/index.php?title=Nonlinear_system
http://en.wikipedia.org/w/index.php?title=Nonlinear_system
http://en.wikipedia.org/w/index.php?title=Harmonic
http://en.wikipedia.org/w/index.php?title=Fundamental_frequency
http://en.wikipedia.org/w/index.php?title=Full-wave_rectifier
http://en.wikipedia.org/w/index.php?title=Symmetric
http://en.wikipedia.org/w/index.php?title=Clipping_%28audio%29
http://en.wikipedia.org/w/index.php?title=Electronic_amplifier
http://en.wikipedia.org/w/index.php?title=Class_A_amplifier


Even and odd functions 6

Notes
[1] Ask the Doctors: Tube vs. Solid-State Harmonics (http:/ / www. uaudio. com/ webzine/ 2005/ october/ content/ content2. html)

Linear system
A linear system is a mathematical model of a system based on the use of a linear operator. Linear systems typically
exhibit features and properties that are much simpler than the general, nonlinear case. As a mathematical abstraction
or idealization, linear systems find important applications in automatic control theory, signal processing, and
telecommunications. For example, the propagation medium for wireless communication systems can often be
modeled by linear systems.

A general deterministic system can be described by operator, , that maps an input, , as a function of to
an output, , a type of black box description. Linear systems satisfy the properties of superposition and scaling
or homogeneity. Given two valid inputs

as well as their respective outputs

then a linear system must satisfy

for any scalar values and .
The behavior of the resulting system subjected to a complex input can be described as a sum of responses to simpler
inputs. In nonlinear systems, there is no such relation. This mathematical property makes the solution of modelling
equations simpler than many nonlinear systems. For time-invariant systems this is the basis of the impulse response
or the frequency response methods (see LTI system theory), which describe a general input function in terms
of unit impulses or frequency components.
Typical differential equations of linear time-invariant systems are well adapted to analysis using the Laplace
transform in the continuous case, and the Z-transform in the discrete case (especially in computer implementations).
Another perspective is that solutions to linear systems comprise a system of functions which act like vectors in the
geometric sense.
A common use of linear models is to describe a nonlinear system by linearization. This is usually done for
mathematical convenience.

Time-varying impulse response
The time-varying impulse response h(t2,t1) of a linear system is defined as the response of the system at time t = t2
to a single impulse applied at time t = t1. In other words, if the input x(t) to a linear system is

where δ(t) represents the Dirac delta function, and the corresponding response y(t) of the system is

then the function h(t2,t1) is the time-varying impulse response of the system.
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Time-varying convolution integral

Continuous time
The output of any continuous time linear system is related to the input by the time-varying convolution integral:

or, equivalently,

Discrete time
The output of any discrete time linear system is related to the input by the time-varying convolution sum:

or equivalently,

where

represents the lag time between the stimulus at time m and the response at time n.

Causality
A linear system is causal if and only if the system's time varying impulse response is identically zero whenever the
time t of the response is earlier than the time s of the stimulus. In other words, for a causal system, the following
condition must hold:
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Time-invariant system
A time-invariant (TIV) system is one whose output does not depend explicitly on time.

If the input signal produces an output then any time shifted input, , results in a
time-shifted output 

This property can be satisfied if the transfer function of the system is not a function of time except expressed by the
input and output. This property can also be stated in another way in terms of a schematic

If a system is time-invariant then the system block is commutative with an arbitrary delay.

Simple example
To demonstrate how to determine if a system is time-invariant then consider the two systems:

• System A: 
• System B: 
Since system A explicitly depends on t outside of and then it is not time-invariant. System B, however,
does not depend explicitly on t so it is time-invariant.

Formal example
A more formal proof of why system A & B from above differ is now presented. To perform this proof, the second
definition will be used.
System A:

Start with a delay of the input 

Now delay the output by 

Clearly , therefore the system is not time-invariant.
System B:

Start with a delay of the input 

Now delay the output by 

Clearly , therefore the system is time-invariant. Although there are many other proofs, this is
the easiest.
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Abstract example
We can denote the shift operator by where is the amount by which a vector's index set should be shifted. For
example, the "advance-by-1" system

can be represented in this abstract notation by

where is a function given by

with the system yielding the shifted output

So is an operator that advances the input vector by 1.
Suppose we represent a system by an operator . This system is time-invariant if it commutes with the shift
operator, i.e.,

If our system equation is given by

then it is time-invariant if we can apply the system operator on followed by the shift operator , or we can
apply the shift operator followed by the system operator , with the two computations yielding equivalent
results.
Applying the system operator first gives

Applying the shift operator first gives

If the system is time-invariant, then

http://en.wikipedia.org/w/index.php?title=Shift_operator
http://en.wikipedia.org/w/index.php?title=Parameter
http://en.wikipedia.org/w/index.php?title=Operator_%28mathematics%29
http://en.wikipedia.org/w/index.php?title=Commutative_operation
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Causal system
A causal system (also known as a physical or nonanticipative system) is a system where the output depends on
past/current inputs but not future inputs i.e. the output only depends on the input for values of .
The idea that the output of a function at any time depends only on past and present values of input is defined by the
property commonly referred to as causality. A system that has some dependence on input values from the future (in
addition to possible dependence on past or current input values) is termed a non-causal or acausal system, and a
system that depends solely on future input values is an anticausal system. Note that some authors have defined an
anticausal system as one that depends solely on future and present input values or, more simply, as a system that
does not depend on past input values.
Classically, nature or physical reality has been considered to be a causal system. Physics involving special relativity
or general relativity require more careful definitions of causality, as described elaborately in causality (physics).
The causality of systems also plays an important role in digital signal processing, where filters are often constructed
so that they are causal. For more information, see causal filter. For a causal system, the impulse response of the
system must be 0 for all t<0. That is the sole necessary as well as sufficient condition for causality of a system, linear
or non-linear.
Note that the systems may be discrete or continuous. Similar rules apply to both kind of systems.

Mathematical definitions
Definition 1: A system mapping to is causal if and only if, for any pair of input signals and such
that

the corresponding outputs satisfy

Definition 2: Suppose is the impulse response of the system . (only fully accurate for a system described
by linear constant coefficient differential equation)

then the system is causal, otherwise it is non-causal.<tr>

Examples
The following examples are for systems with an input and output .

Examples of causal systems
•• Memoryless system

•• Autoregressive filter

http://en.wikipedia.org/w/index.php?title=Physical_system
http://en.wikipedia.org/w/index.php?title=System
http://en.wikipedia.org/w/index.php?title=Causality
http://en.wikipedia.org/w/index.php?title=Acausal_system
http://en.wikipedia.org/w/index.php?title=Anticausal_system
http://en.wikipedia.org/w/index.php?title=Nature
http://en.wikipedia.org/w/index.php?title=Special_relativity
http://en.wikipedia.org/w/index.php?title=General_relativity
http://en.wikipedia.org/w/index.php?title=Causality_%28physics%29
http://en.wikipedia.org/w/index.php?title=Digital_signal_processing
http://en.wikipedia.org/w/index.php?title=LTI_system_theory
http://en.wikipedia.org/w/index.php?title=Causal_filter


Causal system 11

Examples of non-causal (acausal) systems

•• Central moving average

•• For coefficients of t

Examples of anti-causal systems

•• Time reversal

•• Look-ahead

References
• Oppenheim, Alan V.; Willsky, Alan S.; Nawab, Hamid; with S. Hamid (1998). Signals and Systems. Pearson

Education. ISBN 0-13-814757-4.
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Sampling

Sampling (signal processing)

Signal sampling representation. The continuous signal is represented with a green
color whereas the discrete samples are in blue.

In signal processing, sampling is the
reduction of a continuous signal to a discrete
signal. A common example is the
conversion of a sound wave (a continuous
signal) to a sequence of samples (a
discrete-time signal).

A sample refers to a value or set of values at
a point in time and/or space.

A sampler is a subsystem or operation that
extracts samples from a continuous signal.
A theoretical ideal sampler produces
samples equivalent to the instantaneous
value of the continuous signal at the desired
points.

Theory
See also: Nyquist–Shannon sampling theorem

Sampling can be done for functions varying in space, time, or any other dimension, and similar results are obtained
in two or more dimensions.
For functions that vary with time, let s(t) be a continuous function to be sampled, and let sampling be performed by
measuring the value of the continuous function every T seconds, which is called the sampling interval. Thus, the
sampled function is given by the sequence:

s(nT),   for integer values of n.
The sampling frequency or sampling rate fs is defined as the number of samples obtained in one second (samples per
second), thus fs = 1/T.
Although most of the signal is discarded by the sampling process, it is still generally possible to accurately
reconstruct a signal from the samples if the signal is band-limited. A sufficient condition for perfect reconstruction is
that the non-zero portion of the signal's Fourier transform be contained within the interval [–fs/2, fs/2].
The frequency fs/2 is called the Nyquist frequency of the sampling system. Without an anti-aliasing filter,
frequencies higher than the Nyquist frequency will influence the samples in a way that is misinterpreted by the
Whittaker–Shannon interpolation formula, the typical reconstruction formula. For details, see Aliasing.

http://en.wikipedia.org/w/index.php?title=File%3ASignal_Sampling.png
http://en.wikipedia.org/w/index.php?title=Signal_processing
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http://en.wikipedia.org/w/index.php?title=Discrete_signal
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http://en.wikipedia.org/w/index.php?title=Ideal_sampler
http://en.wikipedia.org/w/index.php?title=Sampling_interval
http://en.wikipedia.org/w/index.php?title=Sampling_frequency
http://en.wikipedia.org/w/index.php?title=Band-limited
http://en.wikipedia.org/w/index.php?title=Nyquist_frequency
http://en.wikipedia.org/w/index.php?title=Whittaker%E2%80%93Shannon_interpolation_formula
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Practical implications
In practice, the continuous signal is sampled using an analog-to-digital converter (ADC), a device with various
physical limitations. This results in deviations from the theoretically perfect reconstruction, collectively referred to
as distortion.
Various types of distortion can occur, including:
• Aliasing. A precondition of the sampling theorem is that the signal be bandlimited. However, in practice, no

time-limited signal can be bandlimited. Since signals of interest are almost always time-limited (e.g., at most
spanning the lifetime of the sampling device in question), it follows that they are not bandlimited. However, by
designing a sampler with an appropriate guard band, it is possible to obtain output that is as accurate as necessary.

• Integration effect or aperture effect. This results from the fact that the sample is obtained as a time average within
a sampling region, rather than just being equal to the signal value at the sampling instant. The integration effect is
readily noticeable in photography when the exposure is too long and creates a blur in the image. An ideal camera
would have an exposure time of zero. In a capacitor-based sample and hold circuit, the integration effect is
introduced because the capacitor cannot instantly change voltage thus requiring the sample to have non-zero
width.

• Jitter or deviation from the precise sample timing intervals.
• Noise, including thermal sensor noise, analog circuit noise, etc.
• Slew rate limit error, caused by an inability for an ADC output value to change sufficiently rapidly.
• Quantization as a consequence of the finite precision of words that represent the converted values.
• Error due to other non-linear effects of the mapping of input voltage to converted output value (in addition to the

effects of quantization).
The conventional, practical digital-to-analog converter (DAC) does not output a sequence of dirac impulses (such
that, if ideally low-pass filtered, result in the original signal before sampling) but instead output a sequence of
piecewise constant values or rectangular pulses. This means that there is an inherent effect of the zero-order hold on
the effective frequency response of the DAC resulting in a mild roll-off of gain at the higher frequencies (a 3.9224
dB loss at the Nyquist frequency). This zero-order hold effect is a consequence of the hold action of the DAC and is
not due to the sample and hold that might precede a conventional ADC as is often misunderstood. The DAC can also
suffer errors from jitter, noise, slewing, and non-linear mapping of input value to output voltage.
Jitter, noise, and quantization are often analyzed by modeling them as random errors added to the sample values.
Integration and zero-order hold effects can be analyzed as a form of low-pass filtering. The non-linearities of either
ADC or DAC are analyzed by replacing the ideal linear function mapping with a proposed nonlinear function.

Applications

Audio sampling
Digital audio uses pulse-code modulation and digital signals for sound reproduction. This includes analog-to-digital
conversion (ADC), digital-to-analog conversion (DAC), storage, and transmission. In effect, the system commonly
referred to as digital is in fact a discrete-time, discrete-level analog of a previous electrical analog. While modern
systems can be quite subtle in their methods, the primary usefulness of a digital system is the ability to store, retrieve
and transmit signals without any loss of quality.
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http://en.wikipedia.org/w/index.php?title=Roll-off
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Sampling rate

When it is necessary to capture audio covering the entire 20–20,000 Hz range of human hearing, such as when
recording music or many types of acoustic events, audio waveforms are typically sampled at 44.1 kHz (CD), 48 kHz
(professional audio), or 96 kHz. The approximately double-rate requirement is a consequence of the Nyquist
theorem.
There has been an industry trend towards sampling rates well beyond the basic requirements; 96 kHz and even
192 kHz are available.[1] This is in contrast with laboratory experiments, which have failed to show that ultrasonic
frequencies are audible to human observers; however in some cases ultrasonic sounds do interact with and modulate
the audible part of the frequency spectrum (intermodulation distortion). It is noteworthy that intermodulation
distortion is not present in the live audio and so it represents an artificial coloration to the live sound.[2]

One advantage of higher sampling rates is that they can relax the low-pass filter design requirements for ADCs and
DACs, but with modern oversampling sigma-delta converters this advantage is less important.

Bit depth (quantization)

Audio is typically recorded at 8-, 16-, and 20-bit depth, which yield a theoretical maximum signal to quantization
noise ratio (SQNR) for a pure sine wave of, approximately, 49.93 dB, 98.09 dB and 122.17 dB.[3] Eight-bit audio is
generally not used due to prominent and inherent quantization noise (low maximum SQNR), although the A-law and
u-law 8-bit encodings pack more resolution into 8 bits while increase total harmonic distortion. CD quality audio is
recorded at 16-bit. In practice, not many consumer stereos can produce more than about 90 dB of dynamic range,
although some can exceed 100 dB. Thermal noise limits the true number of bits that can be used in quantization. Few
analog systems have signal to noise ratios (SNR) exceeding 120 dB; consequently, few situations will require more
than 20-bit quantization.
For playback and not recording purposes, a proper analysis of typical programme levels throughout an audio system
reveals that the capabilities of well-engineered 16-bit material far exceed those of the very best hi-fi systems, with
the microphone noise and loudspeaker headroom being the real limiting factors.

Speech sampling

Speech signals, i.e., signals intended to carry only human speech, can usually be sampled at a much lower rate. For
most phonemes, almost all of the energy is contained in the 5Hz-4 kHz range, allowing a sampling rate of 8 kHz.
This is the sampling rate used by nearly all telephony systems, which use the G.711 sampling and quantization
specifications.

Video sampling
Standard-definition television (SDTV) uses either 720 by 480 pixels (US NTSC 525-line) or 704 by 576 pixels (UK
PAL 625-line) for the visible picture area.
High-definition television (HDTV) is currently moving towards three standards referred to as 720p (progressive),
1080i (interlaced) and 1080p (progressive, also known as Full-HD) which all 'HD-Ready' sets will be able to display.
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Undersampling

Plot of sample rates (y axis) versus the upper edge frequency (x axis)
for a band of width 1; grays areas are combinations that are "allowed"

in the sense that no two frequencies in the band alias to same
frequency. The darker gray areas correspond to undersampling with

the lowest allowable sample rate.

When one samples a bandpass signal at a rate lower
than the Nyquist rate, the samples are equal to samples
of a low-frequency alias of the high-frequency signal;
the original signal will still be uniquely represented
and recoverable if the spectrum of its alias does not
cross over half the sampling rate. Such undersampling
is also known as bandpass sampling, harmonic
sampling, IF sampling, and direct IF to digital
conversion.[4]

Oversampling

Oversampling is used in most modern
analog-to-digital converters to reduce the distortion
introduced by practical digital-to-analog converters,
such as a zero-order hold instead of idealizations like
the Whittaker–Shannon interpolation formula.

Complex sampling

Complex sampling refers to the simultaneous sampling of two different, but related, waveforms, resulting in pairs of
samples that are subsequently treated as complex numbers. Usually one waveform   is the Hilbert transform
of the other waveform   and the complex-valued function,     is called an

analytic signal,  whose Fourier transform is zero for all negative values of frequency. In that case, the Nyquist rate
for a waveform with no frequencies ≥ B can be reduced to just B (complex samples/sec), instead of 2B (real
samples/sec).[5] More apparently, the equivalent baseband waveform,     also has a Nyquist rate of

B, because all of its non-zero frequency content is shifted into the interval [-B/2, B/2).
Although complex-valued samples can be obtained as described above, they are much more commonly created by
manipulating samples of a real-valued waveform. For instance, the equivalent baseband waveform can be created
without explicitly computing   by processing the product sequence [6]  through a

digital lowpass filter whose cutoff frequency is B/2.[7] Computing only every other sample of the output sequence
reduces the sample-rate commensurate with the reduced Nyquist rate. The result is half as many complex-valued
samples as the original number of real samples. No information is lost, and the original s(t) waveform can be
recovered, if necessary.
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Notes
[1] Digital Pro Sound (http:/ / www. digitalprosound. com/ Htm/ SoapBox/ soap2_Apogee. htm)
[2] http:/ / world. std. com/ ~griesngr/ intermod. ppt
[3] MT-001: Taking the Mystery out of the Infamous Formula, "SNR=6.02N + 1.76dB," and Why You Should Care (http:/ / www. analog. com/

static/ imported-files/ tutorials/ MT-001. pdf)
[4] Walt Kester (2003). Mixed-signal and DSP design techniques (http:/ / books. google. com/ books?id=G8XyNItpy8AC& pg=PA20). Newnes.

p. 20. ISBN 978-0-7506-7611-3. .
[5] When the complex sample-rate is B, a frequency component at 0.6 B, for instance, will have an alias at -0.4 B, which is unambiguous because

of the constraint that the pre-sampled signal was analytic. Also see Aliasing#Complex_signal_representation

[6] When s(t) is sampled at the Nyquist frequency (1/T = 2B), the product sequence simplifies to 
[7][7] The sequence of complex numbers is convolved with the impulse response of a filter with real-valued coefficients. That is equivalent to

separately filtering the sequences of real parts and imaginary parts and reforming complex pairs at the outputs.

References
• Matt Pharr and Greg Humphreys, Physically Based Rendering: From Theory to Implementation, Morgan

Kaufmann, July 2004. ISBN 0-12-553180-X. The chapter on sampling ( available online (http:/ / graphics.
stanford. edu/ ~mmp/ chapters/ pbrt_chapter7. pdf)) is nicely written with diagrams, core theory and code sample.

• Shannon, Claude E., Communications in the presence of noise, Proc. IRE, vol. 37, pp. 10–21, Jan. 1949.

External links
• Nyquist sampling in digital microscopy (http:/ / www. vanosta. be/ pcrnyq. htm)
• Journal devoted to Sampling Theory (http:/ / www. stsip. org)

Nyquist–Shannon sampling theorem

Fig. 1: Hypothetical spectrum of a bandlimited signal
as a function of frequency

The Nyquist–Shannon sampling theorem, after Harry Nyquist
and Claude Shannon, is a fundamental result in the field of
information theory, in particular telecommunications and signal
processing. Sampling is the process of converting a signal (for
example, a function of continuous time or space) into a numeric
sequence (a function of discrete time or space). Shannon's version
of the theorem states:[1]

If a function x(t) contains no frequencies higher than
B hertz, it is completely determined by giving its
ordinates at a series of points spaced 1/(2B) seconds apart.

The theorem is commonly called the Nyquist sampling theorem; since it was also discovered independently by E.
T. Whittaker, by Vladimir Kotelnikov, and by others, it is also known as Nyquist–Shannon–Kotelnikov,
Whittaker–Shannon–Kotelnikov, Whittaker–Nyquist–Kotelnikov–Shannon, WKS, etc., sampling theorem, as
well as the Cardinal Theorem of Interpolation Theory. It is often referred to simply as the sampling theorem.
In essence, the theorem shows that a bandlimited analog signal can be perfectly reconstructed from an infinite
sequence of samples if the sampling rate exceeds 2B samples per second, where B is the highest frequency of the
original signal. If a signal contains a component at exactly B hertz, then samples spaced at exactly 1/(2B) seconds do
not completely determine the signal, Shannon's statement notwithstanding. This sufficient condition can be
weakened, as discussed at Sampling of non-baseband signals below.
More recent statements of the theorem are sometimes careful to exclude the equality condition; that is, the condition 
is if x(t) contains no frequencies higher than or equal to B; this condition is equivalent to Shannon's except when the
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function includes a steady sinusoidal component at exactly frequency B.
The theorem assumes an idealization of any real-world situation, as it only applies to signals that are sampled for
infinite time; any time-limited x(t) cannot be perfectly bandlimited. Perfect reconstruction is mathematically possible
for the idealized model but only an approximation for real-world signals and sampling techniques, albeit in practice
often a very good one.
The theorem also leads to a formula for reconstruction of the original signal. The constructive proof of the theorem
leads to an understanding of the aliasing that can occur when a sampling system does not satisfy the conditions of the
theorem.
The sampling theorem provides a sufficient condition, but not a necessary one, for perfect reconstruction. The field
of compressed sensing provides a stricter sampling condition when the underlying signal is known to be sparse.
Compressed sensing specifically yields a sub-Nyquist sampling criterion.

Introduction
A signal or function is bandlimited if it contains no energy at frequencies higher than some bandlimit or bandwidth
B. The sampling theorem asserts that, given such a bandlimited signal, the uniformly spaced discrete samples are a
complete representation of the signal as long as the sampling rate is larger than twice the bandwidth B. To formalize
these concepts, let x(t) represent a continuous-time signal and X(f) be the continuous Fourier transform of that signal:

The signal x(t) is said to be bandlimited to a one-sided baseband bandwidth, B, if

  for all       or, equivalently, supp(X) ⊆ [−B, B].[2]

Then the sufficient condition for exact reconstructability from samples at a uniform sampling rate fs (in samples per
unit time) is:

The quantity 2B is called the Nyquist rate and is a property of the bandlimited signal, while fs/2 is called the Nyquist
frequency and is a property of this sampling system.
The time interval between successive samples is referred to as the sampling interval:

and the samples of x(t) are denoted by x(nT) for integer values of n. The sampling theorem leads to a procedure for
reconstructing the original x(t) from the samples and states sufficient conditions for such a reconstruction to be exact.

The sampling process
The theorem describes two processes in signal processing: a sampling process, in which a continuous time signal is
converted to a discrete time signal, and a reconstruction process, in which the original continuous signal is recovered
from the discrete time signal.
The continuous signal varies over time (or space in a digitized image, or another independent variable in some other
application) and the sampling process is performed by measuring the continuous signal's value every T units of time
(or space), which is called the sampling interval. Sampling results in a sequence of numbers, called samples, to
represent the original signal. Each sample value is associated with the instant in time when it was measured. The
reciprocal of the sampling interval (1/T) is the sampling frequency denoted fs, which is measured in samples per unit
of time. If T is expressed in seconds, then fs is expressed in hertz.
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Reconstruction
Reconstruction of the original signal is an interpolation process that mathematically defines a continuous-time signal
x(t) from the discrete samples x(nT) and at times in between the sample instants nT.

Fig. 2: The normalized sinc function: sin(πx) / (πx) ... showing the central peak at
x= 0, and zero-crossings at the other integer values of x.

• The procedure: Each sample value is
multiplied by the sinc function scaled so
that the zero-crossings of the sinc
function occur at the sampling instants
and that the sinc function's central point
is shifted to the time of that sample, nT.
All of these shifted and scaled functions
are then added together to recover the
original signal. The scaled and
time-shifted sinc functions are
continuous making the sum of these also
continuous, so the result of this operation
is a continuous signal. This procedure is
represented by the Whittaker–Shannon
interpolation formula.

• The condition: The signal obtained from this reconstruction process cannot have any frequencies higher than
one-half the sampling frequency. According to the theorem, the reconstructed signal will match the original signal
provided that the original signal contains no frequencies at or above this limit. This condition is called the Nyquist
criterion, or sometimes the Raabe condition.

If the original signal contains a frequency component equal to one-half the sampling rate, the condition is not
satisfied. The resulting reconstructed signal may have a component at that frequency, but the amplitude and phase of
that component generally will not match the original component.
This reconstruction or interpolation using sinc functions is not the only interpolation scheme. Indeed, it is impossible
in practice because it requires summing an infinite number of terms. However, it is the interpolation method that in
theory exactly reconstructs any given bandlimited x(t) with any bandlimit B < 1/(2T); any other method that does so
is formally equivalent to it.

Practical considerations
A few consequences can be drawn from the theorem:
• If the highest frequency B in the original signal is known, the theorem gives the lower bound on the sampling

frequency for which perfect reconstruction can be assured. This lower bound to the sampling frequency, 2B, is
called the Nyquist rate.

• If instead the sampling frequency is known, the theorem gives us an upper bound for frequency components,
B<fs/2, of the signal to allow for perfect reconstruction. This upper bound is the Nyquist frequency, denoted fN.

• Both of these cases imply that the signal to be sampled must be bandlimited; that is, any component of this signal 
which has a frequency above a certain bound should be zero, or at least sufficiently close to zero to allow us to 
neglect its influence on the resulting reconstruction. In the first case, the condition of bandlimitation of the 
sampled signal can be accomplished by assuming a model of the signal which can be analysed in terms of the 
frequency components it contains; for example, sounds that are made by a speaking human normally contain very 
small frequency components at or above 10 kHz and it is then sufficient to sample such an audio signal with a 
sampling frequency of at least 20 kHz. For the second case, we have to assure that the sampled signal is
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bandlimited such that frequency components at or above half of the sampling frequency can be neglected. This is
usually accomplished by means of a suitable low-pass filter; for example, if it is desired to sample speech
waveforms at 8 kHz, the signals should first be lowpass filtered to below 4 kHz.

• In practice, neither of the two statements of the sampling theorem described above can be completely satisfied,
and neither can the reconstruction formula be precisely implemented. The reconstruction process that involves
scaled and delayed sinc functions can be described as ideal. It cannot be realized in practice since it implies that
each sample contributes to the reconstructed signal at almost all time points, requiring summing an infinite
number of terms. Instead, some type of approximation of the sinc functions, finite in length, has to be used. The
error that corresponds to the sinc-function approximation is referred to as interpolation error. Practical
digital-to-analog converters produce neither scaled and delayed sinc functions nor ideal impulses (that if ideally
low-pass filtered would yield the original signal), but a sequence of scaled and delayed rectangular pulses. This
practical piecewise-constant output can be modeled as a zero-order hold filter driven by the sequence of scaled
and delayed dirac impulses referred to in the mathematical basis section below. A shaping filter is sometimes used
after the DAC with zero-order hold to make a better overall approximation.

• Furthermore, in practice, a signal can never be perfectly bandlimited, since ideal "brick-wall" filters cannot be
realized. All practical filters can only attenuate frequencies outside a certain range, not remove them entirely. In
addition to this, a "time-limited" signal can never be bandlimited. This means that even if an ideal reconstruction
could be made, the reconstructed signal would not be exactly the original signal. The error that corresponds to the
failure of bandlimitation is referred to as aliasing.

•• The sampling theorem does not say what happens when the conditions and procedures are not exactly met, but its
proof suggests an analytical framework in which the non-ideality can be studied. A designer of a system that deals
with sampling and reconstruction processes needs a thorough understanding of the signal to be sampled, in
particular its frequency content, the sampling frequency, how the signal is reconstructed in terms of interpolation,
and the requirement for the total reconstruction error, including aliasing, sampling, interpolation and other errors.
These properties and parameters may need to be carefully tuned in order to obtain a useful system.

Aliasing
The Poisson summation formula shows that the samples, x(nT), of function x(t) are sufficient to create a periodic
summation of function X(f). The result is:

(Eq.1)

which is a periodic function and its equivalent representation as a Fourier series, whose coefficients are x[n]. This
function is also known as the discrete-time Fourier transform (DTFT). As depicted in Figures 3, 4, and 8, copies of
X(f) are shifted by multiples of fs and combined by addition.

Fig. 3: Illustration of the spectrum (blue) of a properly sampled bandlimited function and
the adjacent DTFT images (green) that do not overlap. A "brick-wall" low-pass filter can
remove the images and leave the original spectrum, X(f), thus also recovering the original

x(t) from just its samples.

If the Nyquist sampling condition is
not satisfied, adjacent copies overlap,
and it is not possible in general to
discern an unambiguous X(f). Any
frequency component above fs/2 is
indistinguishable from a
lower-frequency component, called an
alias, associated with one of the
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copies. In such cases, the reconstruction technique described below produces the alias, rather than the original
component.

Fig. 4, top: Illustration of the spectrum (blue) of an under-sampled, bandlimited function,
x(t), where the adjacent DTFT images (green) overlap. These overlapping edges or "tails"

of the images add, creating a DTFT from which X(f) is no longer exactly discernible.
Bottom: Illustration of the spectrum (blue) of a critically sampled bandlimited function,

xA(t), where the DTFT images (green) narrowly do not overlap. But the resultant DTFT is
the same as the top figure, because the sum of baseband and images are the same in both
cases. The samples of both functions are also indistinguishable. When they are used to
reconstruct a continuous-time function, in the normal way, the result will be xA(t), not

x(t). And that function is called an alias of x(t), for the particular sampling rate, ƒs.

For a sinusoidal component of exactly
half the sampling frequency, the
component will in general alias to
another sinusoid of the same
frequency, but with a different phase
and amplitude.
To prevent or reduce aliasing, two
things can be done:
1.1. Increase the sampling rate, to above

twice some or all of the frequencies
that are aliasing.

2. Introduce an anti-aliasing filter or
make the anti-aliasing filter more
stringent.

The anti-aliasing filter restricts the
bandwidth of x(t) to satisfy the Nyquist
sampling criterion. Such a restriction
works in theory but is not precisely
realizable, because realizable filters
will always allow some leakage of
high frequencies. However, the
leakage energy can be made small
enough so that the aliasing effects are negligible.

Application to multivariable signals and images

Fig. 5: Subsampled image showing a
Moiré pattern

The sampling theorem is usually formulated for functions of a single variable.
Consequently, the theorem is directly applicable to time-dependent signals
and is normally formulated in that context. However, the sampling theorem
can be extended in a straightforward way to functions of arbitrarily many
variables. Grayscale images, for example, are often represented as
two-dimensional arrays (or matrices) of real numbers representing the relative
intensities of pixels (picture elements) located at the intersections of row and
column sample locations. As a result, images require two independent
variables, or indices, to specify each pixel uniquely — one for the row, and
one for the column.

Color images typically consist of a composite of three separate grayscale
images, one to represent each of the three primary colors — red, green, and
blue, or RGB for short. Other colorspaces using 3-vectors for colors include
HSV, LAB, XYZ, etc. Some colorspaces such as cyan, magenta, yellow, and

black (CMYK) may represent color by four dimensions. All of these are treated as vector-valued functions over a
two-dimensional sampled domain.
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Fig. 6

Similar to one-dimensional discrete-time signals, images can also suffer from
aliasing if the sampling resolution, or pixel density, is inadequate. For
example, a digital photograph of a striped shirt with high frequencies (in other
words, the distance between the stripes is small), can cause aliasing of the
shirt when it is sampled by the camera's image sensor. The aliasing appears as
a moiré pattern. The "solution" to higher sampling in the spatial domain for
this case would be to move closer to the shirt, use a higher resolution sensor,
or to optically blur the image before acquiring it with the sensor.

Another example is shown to the left in the brick patterns. The top image
shows the effects when the sampling theorem's condition is not satisfied.
When software rescales an image (the same process that creates the thumbnail
shown in the lower image) it, in effect, runs the image through a low-pass
filter first and then downsamples the image to result in a smaller image that

does not exhibit the moiré pattern. The top image is what happens when the image is downsampled without low-pass
filtering: aliasing results.

The application of the sampling theorem to images should be made with care. For example, the sampling process in
any standard image sensor (CCD or CMOS camera) is relatively far from the ideal sampling which would measure
the image intensity at a single point. Instead these devices have a relatively large sensor area at each sample point in
order to obtain sufficient amount of light. In other words, any detector has a finite-width point spread function. The
analog optical image intensity function which is sampled by the sensor device is not in general bandlimited, and the
non-ideal sampling is itself a useful type of low-pass filter, though not always sufficient to remove enough high
frequencies to sufficiently reduce aliasing. When the area of the sampling spot (the size of the pixel sensor) is not
large enough to provide sufficient anti-aliasing, a separate anti-aliasing filter (optical low-pass filter) is typically
included in a camera system to further blur the optical image. Despite images having these problems in relation to
the sampling theorem, the theorem can be used to describe the basics of down and up sampling of images.

Downsampling
When a signal is downsampled, the sampling theorem can be invoked via the artifice of resampling a hypothetical
continuous-time reconstruction. The Nyquist criterion must still be satisfied with respect to the new lower sampling
frequency in order to avoid aliasing. To meet the requirements of the theorem, the signal must usually pass through a
low-pass filter of appropriate cutoff frequency as part of the downsampling operation. This low-pass filter, which
prevents aliasing, is called an anti-aliasing filter.
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Critical frequency

Fig. 7: A family of sinusoids at the critical
frequency, all having the same sample sequences

of alternating +1 and –1. That is, they all are
aliases of each other, even though their frequency

is not above half the sample rate.

To illustrate the necessity of fs > 2B, consider the sinusoid:

With fs = 2B or equivalently T = 1/(2B), the samples are given by:

Those samples cannot be distinguished from the samples of:

But for any θ such that |cos(θ)| < 1, x(t) and xA(t) have different
amplitudes and different phase. Ambiguities such as that are the reason
for the strict inequality of the sampling theorem's condition.

Mathematical reasoning for the theorem

Fig. 8: Spectrum, Xs(f), of a properly sampled bandlimited signal (blue) and images
(green) that do not overlap. A brick-wall low-pass filter, H(f), removes the images,

leaves the original spectrum, X(f), and recovers the original signal from the
samples.

From Figures 3 and 8, it is apparent that
when there is no overlap of the copies (aka
"images") of X(f), the k = 0 term of Xs(f) can
be recovered by the product:

     
where:

H(f) need not be precisely defined in the
region [B, fs − B] because Xs(f) is zero in
that region. However, the worst case is
when B = fs/2, the Nyquist frequency. A
function that is sufficient for that and all less
severe cases is:

where rect(u) is the rectangular function.
Therefore:

      (from  Eq.1, above).
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The original function that was sampled can be recovered by an inverse Fourier transform:

     [3]

which is the Whittaker–Shannon interpolation formula. It shows explicitly how the samples, x(nT), can be combined
to reconstruct x(t).
• From Figure 8, it is clear that larger-than-necessary values of fs (smaller values of T), called oversampling, have

no effect on the outcome of the reconstruction and have the benefit of leaving room for a transition band in which
H(f) is free to take intermediate values. Undersampling, which causes aliasing, is not in general a reversible
operation.

• Theoretically, the interpolation formula can be implemented as a low pass filter, whose impulse response is
sinc(t/T) and whose input is which is a Dirac comb function modulated by the
signal samples. Practical digital-to-analog converters (DAC) implement an approximation like the zero-order
hold. In that case, oversampling can reduce the approximation error.

Shannon's original proof
The original proof presented by Shannon is elegant and quite brief, but it offers less intuitive insight into the
subtleties of aliasing, both unintentional and intentional. Quoting Shannon's original paper, which uses f for the
function, F for the spectrum, and W for the bandwidth limit:

Let be the spectrum of   Then

since is assumed to be zero outside the band W. If we let

where n is any positive or negative integer, we obtain

On the left are values of at the sampling points. The integral on the right will be recognized as essentially
the nth coefficient in a Fourier-series expansion of the function taking the interval –W to W as a
fundamental period. This means that the values of the samples determine the Fourier coefficients in
the series expansion of   Thus they determine since is zero for frequencies greater than W,
and for lower frequencies is determined if its Fourier coefficients are determined. But determines
the original function completely, since a function is determined if its spectrum is known. Therefore the
original samples determine the function completely.

Shannon's proof of the theorem is complete at that point, but he goes on to discuss reconstruction via sinc functions, 
what we now call the Whittaker–Shannon interpolation formula as discussed above. He does not derive or prove the
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properties of the sinc function, but these would have been familiar to engineers reading his works at the time, since
the Fourier pair relationship between rect (the rectangular function) and sinc was well known. Quoting Shannon:

Let be the nth sample. Then the function is represented by:

As in the other proof, the existence of the Fourier transform of the original signal is assumed, so the proof does not
say whether the sampling theorem extends to bandlimited stationary random processes.

Sampling of non-baseband signals
As discussed by Shannon:[1]

A similar result is true if the band does not start at zero frequency but at some higher value, and can be
proved by a linear translation (corresponding physically to single-sideband modulation) of the
zero-frequency case. In this case the elementary pulse is obtained from sin(x)/x by single-side-band
modulation.

That is, a sufficient no-loss condition for sampling signals that do not have baseband components exists that involves
the width of the non-zero frequency interval as opposed to its highest frequency component. See Sampling (signal
processing) for more details and examples.
A bandpass condition is that X(f) = 0, for all nonnegative f outside the open band of frequencies:

for some nonnegative integer N. This formulation includes the normal baseband condition as the case N=0.
The corresponding interpolation function is the impulse response of an ideal brick-wall bandpass filter (as opposed
to the ideal brick-wall lowpass filter used above) with cutoffs at the upper and lower edges of the specified band,
which is the difference between a pair of lowpass impulse responses:

Other generalizations, for example to signals occupying multiple non-contiguous bands, are possible as well. Even
the most generalized form of the sampling theorem does not have a provably true converse. That is, one cannot
conclude that information is necessarily lost just because the conditions of the sampling theorem are not satisfied;
from an engineering perspective, however, it is generally safe to assume that if the sampling theorem is not satisfied
then information will most likely be lost.

Nonuniform sampling
The sampling theory of Shannon can be generalized for the case of nonuniform samples, that is, samples not taken
equally spaced in time. The Shannon sampling theory for non-uniform sampling states that a band-limited signal can
be perfectly reconstructed from its samples if the average sampling rate satisfies the Nyquist condition.[4] Therefore,
although uniformly spaced samples may result in easier reconstruction algorithms, it is not a necessary condition for
perfect reconstruction.
The general theory for non-baseband and nonuniform samples was developed in 1967 by Landau.[5] He proved that, 
to paraphrase roughly, the average sampling rate (uniform or otherwise) must be twice the occupied bandwidth of 
the signal, assuming it is a priori known what portion of the spectrum was occupied. In the late 1990s, this work was 
partially extended to cover signals of when the amount of occupied bandwidth was known, but the actual occupied 
portion of the spectrum was unknown.[6] In the 2000s, a complete theory was developed (see the section Beyond 
Nyquist below) using compressed sensing. In particular, the theory, using signal processing language, is described in
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this 2009 paper.[7] They show, among other things, that if the frequency locations are unknown, then it is necessary
to sample at least at twice the Nyquist criteria; in other words, you must pay at least a factor of 2 for not knowing the
location of the spectrum. Note that minimum sampling requirements do not necessarily guarantee stability.

Beyond Nyquist
The Nyquist–Shannon sampling theorem provides a sufficient condition for the sampling and reconstruction of a
band-limited signal. When reconstruction is done via the Whittaker–Shannon interpolation formula, the Nyquist
criterion is also a necessary condition to avoid aliasing, in the sense that if samples are taken at a slower rate than
twice the band limit, then there are some signals that will not be correctly reconstructed. However, if further
restrictions are imposed on the signal, then the Nyquist criterion may no longer be a necessary condition.
A non-trivial example of exploiting extra assumptions about the signal is given by the recent field of compressed
sensing, which allows for full reconstruction with a sub-Nyquist sampling rate. Specifically, this applies to signals
that are sparse (or compressible) in some domain. As an example, compressed sensing deals with signals that may
have a low over-all bandwidth (say, the effective bandwidth EB), but the frequency locations are unknown, rather
than all together in a single band, so that the passband technique doesn't apply. In other words, the frequency
spectrum is sparse. Traditionally, the necessary sampling rate is thus 2B. Using compressed sensing techniques, the
signal could be perfectly reconstructed if it is sampled at a rate slightly greater than the 2EB. The downside of this
approach is that reconstruction is no longer given by a formula, but instead by the solution to a convex optimization
program which requires well-studied but nonlinear methods.

Historical background
The sampling theorem was implied by the work of Harry Nyquist in 1928 ("Certain topics in telegraph transmission
theory"), in which he showed that up to 2B independent pulse samples could be sent through a system of bandwidth
B; but he did not explicitly consider the problem of sampling and reconstruction of continuous signals. About the
same time, Karl Küpfmüller showed a similar result,[8] and discussed the sinc-function impulse response of a
band-limiting filter, via its integral, the step response Integralsinus; this bandlimiting and reconstruction filter that is
so central to the sampling theorem is sometimes referred to as a Küpfmüller filter (but seldom so in English).
The sampling theorem, essentially a dual of Nyquist's result, was proved by Claude E. Shannon in 1949
("Communication in the presence of noise"). V. A. Kotelnikov published similar results in 1933 ("On the
transmission capacity of the 'ether' and of cables in electrical communications", translation from the Russian), as did
the mathematician E. T. Whittaker in 1915 ("Expansions of the Interpolation-Theory", "Theorie der
Kardinalfunktionen"), J. M. Whittaker in 1935 ("Interpolatory function theory"), and Gabor in 1946 ("Theory of
communication").

Other discoverers
Others who have independently discovered or played roles in the development of the sampling theorem have been
discussed in several historical articles, for example by Jerri[9] and by Lüke.[10] For example, Lüke points out that H.
Raabe, an assistant to Küpfmüller, proved the theorem in his 1939 Ph.D. dissertation; the term Raabe condition came
to be associated with the criterion for unambiguous representation (sampling rate greater than twice the bandwidth).
Meijering[11] mentions several other discoverers and names in a paragraph and pair of footnotes:

As pointed out by Higgins [135], the sampling theorem should really be considered in two parts, as done 
above: the first stating the fact that a bandlimited function is completely determined by its samples, the 
second describing how to reconstruct the function using its samples. Both parts of the sampling theorem 
were given in a somewhat different form by J. M. Whittaker [350, 351, 353] and before him also by 
Ogura [241, 242]. They were probably not aware of the fact that the first part of the theorem had been
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stated as early as 1897 by Borel [25].27 As we have seen, Borel also used around that time what became
known as the cardinal series. However, he appears not to have made the link [135]. In later years it
became known that the sampling theorem had been presented before Shannon to the Russian
communication community by Kotel'nikov [173]. In more implicit, verbal form, it had also been
described in the German literature by Raabe [257]. Several authors [33, 205] have mentioned that
Someya [296] introduced the theorem in the Japanese literature parallel to Shannon. In the English
literature, Weston [347] introduced it independently of Shannon around the same time.28

27 Several authors, following Black [16], have claimed that this first part of the sampling theorem was
stated even earlier by Cauchy, in a paper [41] published in 1841. However, the paper of Cauchy does not
contain such a statement, as has been pointed out by Higgins [135].
28 As a consequence of the discovery of the several independent introductions of the sampling theorem,
people started to refer to the theorem by including the names of the aforementioned authors, resulting in
such catchphrases as “the Whittaker-Kotel’nikov-Shannon (WKS) sampling theorem" [155] or even "the
Whittaker-Kotel'nikov-Raabe-Shannon-Someya sampling theorem" [33]. To avoid confusion, perhaps
the best thing to do is to refer to it as the sampling theorem, "rather than trying to find a title that does
justice to all claimants" [136].

Why Nyquist?
Exactly how, when, or why Harry Nyquist had his name attached to the sampling theorem remains obscure. The term
Nyquist Sampling Theorem (capitalized thus) appeared as early as 1959 in a book from his former employer, Bell
Labs,[12] and appeared again in 1963,[13] and not capitalized in 1965.[14] It had been called the Shannon Sampling
Theorem as early as 1954,[15] but also just the sampling theorem by several other books in the early 1950s.
In 1958, Blackman and Tukey[16] cited Nyquist's 1928 paper as a reference for the sampling theorem of information
theory, even though that paper does not treat sampling and reconstruction of continuous signals as others did. Their
glossary of terms includes these entries:

Sampling theorem (of information theory)
Nyquist's result that equi-spaced data, with two or more points per cycle of highest frequency, allows
reconstruction of band-limited functions. (See Cardinal theorem.)
Cardinal theorem (of interpolation theory)
A precise statement of the conditions under which values given at a doubly infinite set of equally spaced
points can be interpolated to yield a continuous band-limited function with the aid of the function

Exactly what "Nyquist's result" they are referring to remains mysterious.
When Shannon stated and proved the sampling theorem in his 1949 paper, according to Meijering[11] "he referred to
the critical sampling interval T = 1/(2W) as the Nyquist interval corresponding to the band W, in recognition of
Nyquist’s discovery of the fundamental importance of this interval in connection with telegraphy." This explains
Nyquist's name on the critical interval, but not on the theorem.
Similarly, Nyquist's name was attached to Nyquist rate in 1953 by Harold S. Black:[17]

"If the essential frequency range is limited to B cycles per second, 2B was given by Nyquist as the maximum
number of code elements per second that could be unambiguously resolved, assuming the peak interference is
less half a quantum step. This rate is generally referred to as signaling at the Nyquist rate and 1/(2B) has
been termed a Nyquist interval." (bold added for emphasis; italics as in the original)
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According to the OED, this may be the origin of the term Nyquist rate. In Black's usage, it is not a sampling rate, but
a signaling rate.

Notes
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[3] The time-domain form follows from rows 202 and 102 of the transform tables
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1. 1. 154. 4255), Moshe Mishali and Yonina C. Eldar, in IEEE Trans. Signal Processing, March 2009, Vol 57 Issue 3
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Aliasing

Properly sampled image of brick wall.

Spatial aliasing in the form of a Moiré pattern.

In signal processing and related disciplines, aliasing refers to an
effect that causes different signals to become indistinguishable
(or aliases of one another) when sampled. It also refers to the
distortion or artifact that results when the signal reconstructed
from samples is different from the original continuous signal.
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Description

Aliasing example of the A letter in Times New Roman.
Left: aliased image, right: antialiased image.

When a digital image is viewed, a reconstruction—also known as
an interpolation—is performed by a display or printer device, and
by the eyes and the brain. If the resolution is too low, the
reconstructed image will differ from the original image, and an
alias is seen. An example of spatial aliasing is the Moiré pattern
one can observe in a poorly pixelized image of a brick wall.
Techniques that avoid such poor pixelizations are called
anti-aliasing. Aliasing can be caused either by the sampling stage
or the reconstruction stage; these may be distinguished by calling
sampling aliasing prealiasing and reconstruction aliasing postaliasing.[1]

Temporal aliasing is a major concern in the sampling of video and audio signals. Music, for instance, may contain
high-frequency components that are inaudible to humans. If a piece of music is sampled at 32000 samples per second
(sps), any frequency components above 16000 Hz (the Nyquist frequency) will cause aliasing when the music is
reproduced by a digital to analog converter (DAC). To prevent that, it is customary to remove components above the
Nyquist frequency (with an anti-aliasing filter) prior to sampling. But any realistic filter or DAC will also affect
(attenuate) the components just below the Nyquist frequency. Therefore, it is also customary to choose a higher
Nyquist frequency by sampling faster.
In video or cinematography, temporal aliasing results from the limited frame rate, and causes the wagon-wheel
effect, whereby a spoked wheel appears to rotate too slowly or even backwards. Aliasing has changed its apparent
frequency of rotation. A reversal of direction can be described as a negative frequency. Temporal aliasing
frequencies in video and cinematography are determined by the frame rate of the camera, but the relative intensity of
the aliased frequencies is determined by the shutter timing (exposure time) or the use of a temporal aliasing
reduction filter during filming.[2]

Like the video camera, most sampling schemes are periodic; that is they have a characteristic sampling frequency in
time or in space. Digital cameras provide a certain number of samples (pixels) per degree or per radian, or samples
per mm in the focal plane of the camera. Audio signals are sampled (digitized) with an analog-to-digital converter,
which produces a constant number of samples per second. Some of the most dramatic and subtle examples of
aliasing occur when the signal being sampled also has periodic content.

Bandlimited functions
Actual signals have finite duration and their frequency content, as defined by the Fourier transform, has no upper
bound. Some amount of aliasing always occurs when such functions are sampled. Functions whose frequency
content is bounded (bandlimited) have infinite duration. If sampled at a high enough rate, determined by the
bandwidth, the original function can in theory be perfectly reconstructed from the infinite set of samples.

Bandpass signals
Sometimes aliasing is used intentionally on signals with no low-frequency content, called bandpass signals.
Undersampling, which creates low-frequency aliases, can produce the same result, with less effort, as
frequency-shifting the signal to lower frequencies before sampling at the lower rate. Some digital channelizers[3]

exploit aliasing in this way for computational efficiency. See Sampling (signal processing) and Nyquist rate (relative
to sampling).
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Sampling sinusoidal functions
Sinusoids are an important type of periodic function, because realistic signals are often modeled as the summation of
many sinusoids of different frequencies and different amplitudes (with a Fourier series or transform). Understanding
what aliasing does to the individual sinusoids is useful in understanding what happens to their sum.

Two different sinusoids that fit the same set of samples.

Here a plot depicts a set of samples
whose sample-interval is 1, and two (of
many) different sinusoids that could
have produced the samples. The
sample-rate in this case is = 1. For
instance, if the interval is 1 second, the
rate is 1 sample per second. Nine
cycles of the red sinusoid and 1 cycle
of the blue sinusoid span an interval of
10. The respective sinusoid frequencies are  = 0.9  and  = 0.1.  In general, when a sinusoid of frequency

is sampled with frequency the resulting samples are indistinguishable from those of another sinusoid of
frequency   for any integer N. The values corresponding to N ≠ 0 are called images or aliases of frequency

  In our example, the N=±1 aliases of   are      and      A negative frequency
is equivalent to its absolute value, because sin(‑wt+θ)=sin(wt‑θ+π), and cos(‑wt+θ)=cos(wt‑θ). Therefore we can
express the positive-valued image frequencies as   for any integer N (with 
being the actual signal frequency). Then the N=1 alias of   is     (and vice versa).
Aliasing matters when one attempts to reconstruct the original waveform from its samples. The most common
reconstruction technique produces the smallest of the   frequencies. So it is usually important that

be the unique minimum. A necessary and sufficient condition for that is where is
commonly called the Nyquist frequency of a system that samples at rate   In our example, the Nyquist condition
is satisfied if the original signal is the blue sinusoid ( ).  But if   the usual reconstruction method
will produce the blue sinusoid instead of the red one.

Folding

The black dots are aliases of each other. The solid red line is an example of adjusting
amplitude vs frequency. The dashed red lines are the corresponding paths of the aliases.

As increases from 0 to  
goes from   to  

Similarly, as increases from  
to   continues decreasing
from to 0.
A graph of amplitude vs frequency for
a single sinusoid at frequency 
and some of its aliases at  
and would look like the 4 black
dots in the adjacent figure. The red
lines depict the paths (loci) of the 4
dots if we were to adjust the frequency
and amplitude of the sinusoid along the solid red segment (between and ). No matter what function we
choose to change the amplitude vs frequency, the graph will exhibit symmetry between 0 and This symmetry is
commonly referred to as folding, and another name for (the Nyquist frequency) is folding frequency. Folding
is most often observed in practice when viewing the frequency spectrum of real-valued samples using a discrete
Fourier transform.
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Complex sinusoids
Complex sinusoids are waveforms whose samples are complex numbers, and the concept of negative frequency is
necessary to distinguish them. In that case, the frequencies of the aliases are given by just:

  Therefore, as increases from   to   goes from   up to 0. 
Consequently, complex sinusoids do not exhibit folding. Complex samples of real-valued sinusoids have zero-valued
imaginary parts and do exhibit folding.

Sample frequency

Illustration of 4 waveforms reconstructed from samples taken at 6 different rates. Two of
the waveforms are sufficiently sampled to avoid aliasing at all 6 rates. The other two

illustrate increasing distortion (aliasing) at the lower rates.

When the condition is met for
the highest frequency component of the
original signal, then it is met for all the
frequency components, a condition
known as the Nyquist criterion. That is
typically approximated by filtering the
original signal to attenuate high
frequency components before it is
sampled. They still generate
low-frequency aliases, but at very low
amplitude levels, so as not to cause a
problem. A filter chosen in anticipation
of a certain sample frequency is called
an anti-aliasing filter. The filtered signal
can subsequently be reconstructed
without significant additional distortion,
for example by the Whittaker–Shannon
interpolation formula.

The Nyquist criterion presumes that the frequency content of the signal being sampled has an upper bound. Implicit
in that assumption is that the signal's duration has no upper bound. Similarly, the Whittaker–Shannon interpolation
formula represents an interpolation filter with an unrealizable frequency response. These assumptions make up a
mathematical model that is an idealized approximation, at best, to any realistic situation. The conclusion, that perfect
reconstruction is possible, is mathematically correct for the model, but only an approximation for actual samples of
an actual signal.

Historical usage
Historically the term aliasing evolved from radio engineering because of the action of superheterodyne receivers.
When the receiver shifts multiple signals down to lower frequencies, from RF to IF by heterodyning, an unwanted
signal, from an RF frequency equally far from the local oscillator (LO) frequency as the desired signal, but on the
wrong side of the LO, can end up at the same IF frequency as the wanted one. If it is strong enough it can interfere
with reception of the desired signal. This unwanted signal is known as an image or alias of the desired signal.
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Angular aliasing
Aliasing occurs whenever the use of discrete elements to capture or produce a continuous signal causes frequency
ambiguity.
Spatial aliasing, particular of angular frequency, can occur when reproducing a light field[4] or sound field with
discrete elements, as in 3D displays or wave field synthesis of sound.
This aliasing is visible in images such as posters with lenticular printing: if they have low angular resolution, then as
one moves past them, say from left-to-right, the 2D image does not initially change (so it appears to move left), then
as one moves to the next angular image, the image suddenly changes (so it jumps right) – and the frequency and
amplitude of this side-to-side movement corresponds to the angular resolution of the image (and, for frequency, the
speed of the viewer's lateral movement), which is the angular aliasing of the 4D light field.
The lack of parallax on viewer movement in 2D images and in 3-D film produced by stereoscopic glasses (in 3D
films the effect is called "yawing", as the image appears to rotate on its axis) can similarly be seen as loss of angular
resolution, all angular frequencies being aliased to 0 (constant).

More examples

Online "live" example
The qualitative effects of aliasing can be heard in the following audio demonstration. Six sawtooth waves are played
in succession, with the first two sawtooths having a fundamental frequency of 440 Hz (A4), the second two having
fundamental frequency of 880 Hz (A5), and the final two at 1760 Hz (A6). The sawtooths alternate between
bandlimited (non-aliased) sawtooths and aliased sawtooths and the sampling rate is 22.05 kHz. The bandlimited
sawtooths are synthesized from the sawtooth waveform's Fourier series such that no harmonics above the Nyquist
frequency are present.
The aliasing distortion in the lower frequencies is increasingly obvious with higher fundamental frequencies, and
while the bandlimited sawtooth is still clear at 1760 Hz, the aliased sawtooth is degraded and harsh with a buzzing
audible at frequencies lower than the fundamental.

Direction finding
A form of spatial aliasing can also occur in antenna arrays or microphone arrays used to estimate the direction of
arrival of a wave signal, as in geophysical exploration by seismic waves. Waves must be sampled at more than two
points per wavelength, or the wave arrival direction becomes ambiguous.

Notes
[1] Mitchell, Don P.; Netravali, Arun N. (August 1988). "Reconstruction filters in computer-graphics" (http:/ / www. mentallandscape. com/

Papers_siggraph88. pdf). 22. ACM SIGGRAPH International Conference on Computer Graphics and Interactive Techniques (http:/ / portal.
acm. org/ toc. cfm?id=54852& type=proceeding& coll=GUIDE& dl=GUIDE,ACM& CFID=30538218& CFTOKEN=95411512).
pp. 221–228. doi:10.1145/54852.378514. ISBN 0-89791-275-6. .

[2] Tessive, LLC (2010). "Time Filter Technical Explanation" (http:/ / www. tessive. com/ home/ time-filter-faq-1/
time-filter-technical-explanation)

[3] harris, frederic j. (Aug 2006). Multirate Signal Processing for Communication Systems. Upper Saddle River, NJ: Prentice Hall PTR.
ISBN 0-13-146511-2.

[4] The (New) Stanford Light Field Archive (http:/ / lightfield. stanford. edu/ lfs. html)
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External links
• Anti-Aliasing Filter Primer (http:/ / lavidaleica. com/ content/ anti-aliasing-filter-primer) by La Vida Leica

discusses its purpose and effect on the image recorded.
• Frequency Aliasing Demonstration (http:/ / burtonmackenzie. com/ 2006/ 07/ i-cant-drive-55. html) by Burton

MacKenZie using stop frame animation and a clock.
• Your Calculator is Wrong Video (http:/ / www. youtube. com/ watch?v=UDfR6GVFFSc) from YouTube,

includes some information about aliasing toward the end.

Quantization (signal processing)

Sampled signal (discrete signal): discrete time,
continuous values.

Quantized signal: continuous time, discrete
values.

Digital signal (sampled, quantized): discrete time,
discrete values.

Quantization, in mathematics and digital signal processing, is the
process of mapping a large set of input values to a smaller set – such as
rounding values to some unit of precision. A device or algorithmic
function that performs quantization is called a quantizer. The error
introduced by quantization is referred to as quantization error or
round-off error. Quantization is involved to some degree in nearly all
digital signal processing, as the process of representing a signal in
digital form ordinarily involves rounding. Quantization also forms the
core of essentially all lossy compression algorithms.

Because quantization is a many-to-few mapping, it is an inherently
non-linear and irreversible process (i.e., because the same output value
is shared by multiple input values, it is impossible in general to recover
the exact input value when given only the output value).

The set of possible input values may be infinitely large, and may
possibly be continuous and therefore uncountable (such as the set of all
real numbers, or all real numbers within some limited range). The set
of possible output values may be finite or countably infinite. The input
and output sets involved in quantization can be defined in rather
general way. For example, vector quantization is the application of
quantization to multi-dimensional (vector-valued) input data.[1]

There are two substantially different classes of applications where
quantization is used:
• The first type, which may simply be called rounding quantization, is

the one employed for many applications, to enable the use of a
simple approximate representation for some quantity that is to be
measured and used in other calculations. This category includes the
simple rounding approximations used in everyday arithmetic. This
category also includes analog-to-digital conversion of a signal for a
digital signal processing system (e.g., using a sound card of a
personal computer to capture an audio signal) and the calculations performed within most digital filtering

processes. Here the purpose is primarily to retain as much signal fidelity as possible while eliminating 
unnecessary precision and keeping the dynamic range of the signal within practical limits (to avoid signal clipping
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or arithmetic overflow). In such uses, substantial loss of signal fidelity is often unacceptable, and the design often
centers around managing the approximation error to ensure that very little distortion is introduced.

• The second type, which can be called rate–distortion optimized quantization, is encountered in source coding for
"lossy" data compression algorithms, where the purpose is to manage distortion within the limits of the bit rate
supported by a communication channel or storage medium. In this second setting, the amount of introduced
distortion may be managed carefully by sophisticated techniques, and introducing some significant amount of
distortion may be unavoidable. A quantizer designed for this purpose may be quite different and more elaborate in
design than an ordinary rounding operation. It is in this domain that substantial rate–distortion theory analysis is
likely to be applied. However, the same concepts actually apply in both use cases.

The analysis of quantization involves studying the amount of data (typically measured in digits or bits or bit rate)
that is used to represent the output of the quantizer, and studying the loss of precision that is introduced by the
quantization process (which is referred to as the distortion). The general field of such study of rate and distortion is
known as rate–distortion theory.

Scalar quantization
The most common type of quantization is known as scalar quantization. Scalar quantization, typically denoted as

, is the process of using a quantization function ( ) to map a scalar (one-dimensional) input value 
to a scalar output value . Scalar quantization can be as simple and intuitive as rounding high-precision numbers to
the nearest integer, or to the nearest multiple of some other unit of precision (such as rounding a large monetary
amount to the nearest thousand dollars). Scalar quantization of continuous-valued input data that is performed by an
electronic sensor is referred to as analog-to-digital conversion. Analog-to-digital conversion often also involves
sampling the signal periodically in time (e.g., at 44.1 kHz for CD-quality audio signals).

Rounding example
As an example, rounding a real number to the nearest integer value forms a very basic type of quantizer – a
uniform one. A typical (mid-tread) uniform quantizer with a quantization step size equal to some value can be
expressed as

,

where the function ( ) is the sign function (also known as the signum function). For simple rounding to the
nearest integer, the step size is equal to 1. With or with equal to any other integer value, this
quantizer has real-valued inputs and integer-valued outputs, although this property is not a necessity – a quantizer
may also have an integer input domain and may also have non-integer output values. The essential property of a
quantizer is that it has a countable set of possible output values that has fewer members than the set of possible input
values. The members of the set of output values may have integer, rational, or real values (or even other possible
values as well, in general – such as vector values or complex numbers).
When the quantization step size is small (relative to the variation in the signal being measured), it is relatively simple
to show[2][3][4][5][6][7] that the mean squared error produced by such a rounding operation will be approximately

.
Because the set of possible output values of a quantizer is countable, any quantizer can be decomposed into two
distinct stages, which can be referred to as the classification stage (or forward quantization stage) and the
reconstruction stage (or inverse quantization stage), where the classification stage maps the input value to an integer
quantization index and the reconstruction stage maps the index to the reconstruction value that is the
output approximation of the input value. For the example uniform quantizer described above, the forward
quantization stage can be expressed as
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,

and the reconstruction stage for this example quantizer is simply

.

This decomposition is useful for the design and analysis of quantization behavior, and it illustrates how the quantized
data can be communicated over a communication channel – a source encoder can perform the forward quantization
stage and send the index information through a communication channel (possibly applying entropy coding
techniques to the quantization indices), and a decoder can perform the reconstruction stage to produce the output
approximation of the original input data. In more elaborate quantization designs, both the forward and inverse
quantization stages may be substantially more complex. In general, the forward quantization stage may use any
function that maps the input data to the integer space of the quantization index data, and the inverse quantization
stage can conceptually (or literally) be a table look-up operation to map each quantization index to a corresponding
reconstruction value. This two-stage decomposition applies equally well to vector as well as scalar quantizers.

Mid-riser and mid-tread uniform quantizers
Most uniform quantizers for signed input data can be classified as being of one of two types: mid-riser and
mid-tread. The terminology is based on what happens in the region around the value 0, and uses the analogy of
viewing the input-output function of the quantizer as a stairway. Mid-tread quantizers have a zero-valued
reconstruction level (corresponding to a tread of a stairway), while mid-riser quantizers have a zero-valued
classification threshold (corresponding to a riser of a stairway).[8]

The formulas for mid-tread uniform quantization are provided above.
The input-output formula for a mid-riser uniform quantizer is given by:

,

where the classification rule is given by

and the reconstruction rule is

.

Note that mid-riser uniform quantizers do not have a zero output value – their minimum output magnitude is half the
step size. When the input data can be modeled as a random variable with a probability density function (pdf) that is
smooth and symmetric around zero, mid-riser quantizers also always produce an output entropy of at least 1 bit per
sample.
In contrast, mid-tread quantizers do have a zero output level, and can reach arbitrarily low bit rates per sample for
input distributions that are symmetric and taper off at higher magnitudes. For some applications, having a zero
output signal representation or supporting low output entropy may be a necessity. In such cases, using a mid-tread
uniform quantizer may be appropriate while using a mid-riser one would not be.
In general, a mid-riser or mid-tread quantizer may not actually be a uniform quantizer – i.e., the size of the
quantizer's classification intervals may not all be the same, or the spacing between its possible output values may not
all be the same. The distinguishing characteristic of a mid-riser quantizer is that it has a classification threshold value
that is exactly zero, and the distinguishing characteristic of a mid-tread quantizer is that is it has a reconstruction
value that is exactly zero.[8]

Another name for a mid-tread quantizer is dead-zone quantizer, and the classification region around the zero output 
value of such a quantizer is referred to as the dead zone. The dead zone can sometimes serve the same purpose as a
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noise gate or squelch function.

Granular distortion and overload distortion
Often the design of a quantizer involves supporting only a limited range of possible output values and performing
clipping to limit the output to this range whenever the input exceeds the supported range. The error introduced by
this clipping is referred to as overload distortion. Within the extreme limits of the supported range, the amount of
spacing between the selectable output values of a quantizer is referred to as its granularity, and the error introduced
by this spacing is referred to as granular distortion. It is common for the design of a quantizer to involve determining
the proper balance between granular distortion and overload distortion. For a given supported number of possible
output values, reducing the average granular distortion may involve increasing the average overload distortion, and
vice-versa. A technique for controlling the amplitude of the signal (or, equivalently, the quantization step size ) to
achieve the appropriate balance is the use of automatic gain control (AGC). However, in some quantizer designs, the
concepts of granular error and overload error may not apply (e.g., for a quantizer with a limited range of input data or
with a countably infinite set of selectable output values).

The additive noise model for quantization error
A common assumption for the analysis of quantization error is that it affects a signal processing system in a similar
manner to that of additive white noise – having negligible correlation with the signal and an approximately flat
power spectral density.[3][9][10][7] The additive noise model is commonly used for the analysis of quantization error
effects in digital filtering systems, and it can be very useful in such analysis. It has been shown to be a valid model in
cases of high resolution quantization (small relative to the signal strength) with smooth probability density
functions.[3][11] However, additive noise behaviour is not always a valid assumption, and care should be taken to
avoid assuming that this model always applies. In actuality, the quantization error (for quantizers defined as
described here) is deterministically related to the signal rather than being independent of it,[7] and in some cases it
can even cause limit cycles to appear in digital signal processing systems.[10]

One way to ensure effective independence of the quantization error from the source signal is to perform dithered
quantization (sometimes with noise shaping), which involves adding random (or pseudo-random) noise to the signal
prior to quantization.[10][7] This can sometimes be beneficial for such purposes as improving the subjective quality of
the result, however it can increase the total quantity of error introduced by the quantization process.

Rate–distortion quantizer design
A scalar quantizer, which performs a quantization operation, can ordinarily be decomposed into two stages:

• Classification: A process that classifies the input signal range into non-overlapping intervals , by
defining  boundary (decision) values , such that for 
, with the extreme limits defined by and . All the inputs that fall in a given interval
range are associated with the same quantization index .• Reconstruction: Each interval is represented by a reconstruction value which implements the mapping

.
These two stages together comprise the mathematical operation of .
Entropy coding techniques can be applied to communicate the quantization indices from a source encoder that
performs the classification stage to a decoder that performs the reconstruction stage. One way to do this is to
associate each quantization index with a binary codeword . An important consideration is the number of bits
used for each codeword, denoted here by .
As a result, the design of an -level quantizer and an associated set of codewords for communicating its index 
values requires finding the values of , and which optimally satisfy a selected set of

http://en.wikipedia.org/w/index.php?title=Noise_gate
http://en.wikipedia.org/w/index.php?title=Squelch
http://en.wikipedia.org/w/index.php?title=Automatic_gain_control
http://en.wikipedia.org/w/index.php?title=Quantization_error
http://en.wikipedia.org/w/index.php?title=White_noise
http://en.wikipedia.org/w/index.php?title=Power_spectral_density
http://en.wikipedia.org/w/index.php?title=Limit_cycle
http://en.wikipedia.org/w/index.php?title=Dither
http://en.wikipedia.org/w/index.php?title=Noise_shaping
http://en.wikipedia.org/w/index.php?title=Pseudo-random
http://en.wikipedia.org/w/index.php?title=Entropy_coding


Quantization (signal processing) 38

design constraints such as the bit rate and distortion .
Assuming that an information source produces random variables with an associated probability density
function , the probability that the random variable falls within a particular quantization interval is
given by

.

The resulting bit rate , in units of average bits per quantized value, for this quantizer can be derived as follows:

.

If it is assumed that distortion is measured by mean squared error, the distortion D, is given by:

.

Note that other distortion measures can also be considered, although mean squared error is a popular one.

A key observation is that rate depends on the decision boundaries and the codeword lengths
, whereas the distortion depends on the decision boundaries and the

reconstruction levels .
After defining these two performance metrics for the quantizer, a typical Rate–Distortion formulation for a quantizer
design problem can be expressed in one of two ways:
1. Given a maximum distortion constraint , minimize the bit rate 
2. Given a maximum bit rate constraint , minimize the distortion 
Often the solution to these problems can be equivalently (or approximately) expressed and solved by converting the
formulation to the unconstrained problem

where the Lagrange multiplier is a non-negative constant that establishes the appropriate balance between rate
and distortion. Solving the unconstrained problem is equivalent to finding a point on the convex hull of the family of
solutions to an equivalent constrained formulation of the problem. However, finding a solution – especially a
closed-form solution – to any of these three problem formulations can be difficult. Solutions that do not require
multi-dimensional iterative optimization techniques have been published for only three probability distribution
functions: the uniform,[12] exponential,[13] and Laplacian[13] distributions. Iterative optimization approaches can be
used to find solutions in other cases.[14][15][7]

Note that the reconstruction values affect only the distortion – they do not affect the bit rate – and that
each individual makes a separate contribution to the total distortion as shown below:

where

This observation can be used to ease the analysis – given the set of values, the value of each can be
optimized separately to minimize its contribution to the distortion .
For the mean-square error distortion criterion, it can be easily shown that the optimal set of reconstruction values

is given by setting the reconstruction value within each interval to the conditional expected value
(also referred to as the centroid) within the interval, as given by:

.
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The use of sufficiently well-designed entropy coding techniques can result in the use of a bit rate that is close to the
true information content of the indices , such that effectively

and therefore

The use of this approximation can allow the entropy coding design problem to be separated from the design of the
quantizer itself. Modern entropy coding techniques such as arithmetic coding can achieve bit rates that are very close
to the true entropy of a source, given a set of known (or adaptively estimated) probabilities .
In some designs, rather than optimizing for a particular number of classification regions , the quantizer design
problem may include optimization of the value of as well. For some probabilistic source models, the best
performance may be achieved when approaches infinity.

Neglecting the entropy constraint: Lloyd–Max quantization
In the above formulation, if the bit rate constraint is neglected by setting equal to 0, or equivalently if it is
assumed that a fixed-length code (FLC) will be used to represent the quantized data instead of a variable-length code
(or some other entropy coding technology such as arithmetic coding that is better than an FLC in the rate–distortion
sense), the optimization problem reduces to minimization of distortion alone.

The indices produced by an -level quantizer can be coded using a fixed-length code using 
bits/symbol. For example when 256 levels, the FLC bit rate is 8 bits/symbol. For this reason, such a
quantizer has sometimes been called an 8-bit quantizer. However using an FLC eliminates the compression
improvement that can be obtained by use of better entropy coding.
Assuming an FLC with levels, the Rate–Distortion minimization problem can be reduced to distortion
minimization alone. The reduced problem can be stated as follows: given a source with pdf and the
constraint that the quantizer must use only classification regions, find the decision boundaries and
reconstruction levels to minimize the resulting distortion

Finding an optimal solution to the above problem results in a quantizer sometimes called a MMSQE (minimum
mean-square quantization error) solution, and the resulting pdf-optimized (non-uniform) quantizer is referred to as a
Lloyd–Max quantizer, named after two people who independently developed iterative methods[16][17][7] to solve the
two sets of simultaneous equations resulting from and , as follows:

,

which places each threshold at the mid-point between each pair of reconstruction values, and

which places each reconstruction value at the centroid (conditional expected value) of its associated classification
interval.
Lloyd's Method I algorithm, originally described in 1957, can be generalized in a straighforward way for application
to vector data. This generalization results in the Linde–Buzo–Gray (LBG) or k-means classifier optimization
methods. Moreover, the technique can be further generalized in a straightforward way to also include an entropy
constraint for vector data.[18]
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Uniform quantization and the 6 dB/bit approximation
The Lloyd–Max quantizer is actually a uniform quantizer when the input pdf is uniformly distributed over the range

. However, for a source that does not have a uniform distribution, the
minimum-distortion quantizer may not be a uniform quantizer.
The analysis of a uniform quantizer applied to a uniformly distributed source can be summarized in what follows:

A symmetric source X can be modelled with , for and 0 elsewhere. The

step size and the signal to quantization noise ratio (SQNR) of the quantizer is

SQNR .

For a fixed-length code using bits, , resulting in

SQNR dB,
or approximately 6 dB per bit. For example, for =8 bits, =256 levels and SQNR = 8*6 = 48 dB; and for 
=16 bits, =65536 and SQNR = 16*6 = 96 dB. The property of 6 dB improvement in SQNR for each extra bit
used in quantization is a well-known figure of merit. However, it must be used with care: this derivation is only for a
uniform quantizer applied to a uniform source.
For other source pdfs and other quantizer designs, the SQNR may be somewhat different than predicted by 6 dB/bit,
depending on the type of pdf, the type of source, the type of quantizer, and the bit rate range of operation.
However, it is common to assume that for many sources, the slope of a quantizer SQNR function can be
approximated as 6 dB/bit when operating at a sufficiently high bit rate. At asymptotically high bit rates, cutting the
step size in half increases the bit rate by approximately 1 bit per sample (because 1 bit is needed to indicate whether
the value is in the left or right half of the prior double-sized interval) and reduces the mean squared error by a factor
of 4 (i.e., 6 dB) based on the approximation.
At asymptotically high bit rates, the 6 dB/bit approximation is supported for many source pdfs by rigorous
theoretical analysis.[3][4][6][7] Moreover, the structure of the optimal scalar quantizer (in the rate–distortion sense)
approaches that of a uniform quantizer under these conditions.[6][7]

Companding quantizers
Companded quantization is the combination of three functional building blocks – namely, a (continuous-domain)
signal dynamic range compressor, a limited-range uniform quantizer, and a (continuous-domain) signal dynamic
range expander that basically inverts the compressor function. This type of quantization is frequently used in older
speech telephony systems. The compander function of the compressor is key to the performance of such a
quantization system. In principle, the compressor function can be designed to exactly map the boundaries of the
optimal intervals of any desired scalar quantizer function to the equal-size intervals used by the uniform quantizer
and similarly the expander function can exactly map the uniform quantizer reconstruction values to any arbitrary
reconstruction values. Thus, with arbitrary compressor and expander functions, any possible non-uniform scalar
quantizer can be equivalently implemented as a companded quantizer.[3][7] In practice, companders are designed to
operate according to relatively-simple dynamic range compressor functions that are designed to be suitable for
implementation using simple analog electronic circuits. The two most popular compander functions used for
telecommunications are the A-law and μ-law functions.

http://en.wikipedia.org/w/index.php?title=Probability_density_function
http://en.wikipedia.org/w/index.php?title=Companding
http://en.wikipedia.org/w/index.php?title=Dynamic_range_compression
http://en.wikipedia.org/w/index.php?title=A-law_algorithm
http://en.wikipedia.org/w/index.php?title=%CE%9C-law_algorithm


Quantization (signal processing) 41

Notes
[1] Allen Gersho and Robert M. Gray, Vector Quantization and Signal Compression, Springer, ISBN 978-0-7923-9181-4, 1991.
[2] William Fleetwood Sheppard, "On the Calculation of the Most Probable Values of Frequency Constants for data arranged according to

Equidistant Divisions of a Scale", Proceedings of the London Mathematical Society, Vol. 29, pp. 353–80, 1898.
[3] W. R. Bennett, "Spectra of Quantized Signals", Bell System Technical Journal, Vol. 27, pp. 446–472, July 1948.
[4] B. M. Oliver, J. R. Pierce, and Claude E. Shannon, "The Philosophy of PCM", Proceedings of the IRE, Vol. 36, pp. 1324–1331, Nov. 1948.
[5] Seymour Stein and J. Jay Jones, Modern Communication Principles, McGraw–Hill, ISBN 978-0-07-061003-3, 1967 (p. 196).
[6] Herbert Gish and John N. Pierce, "Asymptotically Efficient Quantizing", IEEE Transactions on Information Theory, Vol. IT-14, No. 5, pp.

676–683, Sept. 1968.
[7] Robert M. Gray and David L. Neuhoff, "Quantization", IEEE Transactions on Information Theory, Vol. IT-44, No. 6, pp. 2325–2383, Oct.

1998.
[8] Allen Gersho, "Quantization", IEEE Communications Society Magazine, pp. 16–28, Sept. 1977.
[9] Bernard Widrow, "A study of rough amplitude quantization by means of Nyquist sampling theory", IRE Trans. Circuit Theory, Vol. CT-3,

pp. 266–276, 1956.
[10] Bernard Widrow, "Statistical analysis of amplitude quantized sampled data systems", Trans. AIEE Pt. II: Appl. Ind., Vol. 79, pp. 555–568,

Jan. 1961.
[11] Daniel Marco and David L. Neuhoff, "The Validity of the Additive Noise Model for Uniform Scalar Quantizers", IEEE Transactions on

Information Theory, Vol. IT-51, No. 5, pp. 1739–1755, May 2005.
[12] Nariman Farvardin and James W. Modestino, "Optimum Quantizer Performance for a Class of Non-Gaussian Memoryless Sources", IEEE

Transactions on Information Theory, Vol. IT-30, No. 3, pp. 485–497, May 1982 (Section VI.C and Appendix B).
[13] Gary J. Sullivan, "Efficient Scalar Quantization of Exponential and Laplacian Random Variables", IEEE Transactions on Information

Theory, Vol. IT-42, No. 5, pp. 1365–1374, Sept. 1996.
[14] Toby Berger, "Optimum Quantizers and Permutation Codes", IEEE Transactions on Information Theory, Vol. IT-18, No. 6, pp. 759–765,

Nov. 1972.
[15] Toby Berger, "Minimum Entropy Quantizers and Permutation Codes", IEEE Transactions on Information Theory, Vol. IT-28, No. 2, pp.

149–157, Mar. 1982.
[16] Stuart P. Lloyd, "Least Squares Quantization in PCM", IEEE Transactions on Information Theory, Vol. IT-28, pp. 129–137, No. 2, March

1982 (work documented in a manuscript circulated for comments at Bell Laboratories with a department log date of 31 July 1957 and also
presented at the 1957 meeting of the Institute of Mathematical Statistics, although not formally published until 1982).

[17] Joel Max, "Quantizing for Minimum Distortion", IRE Transactions on Information Theory, Vol. IT-6, pp. 7–12, March 1960.
[18] Philip A. Chou, Tom Lookabaugh, and Robert M. Gray, "Entropy-Constrained Vector Quantization", IEEE Transactions on Acoustics,

Speech, and Signal Processing, Vol. ASSP-37, No. 1, Jan. 1989.

References
• Sayood, Khalid (2005), Introduction to Data Compression, Third Edition, Morgan Kaufmann,

ISBN 978-0-12-620862-7
• Jayant, Nikil S.; Noll, Peter (1984), Digital Coding of Waveforms: Principles and Applications to Speech and

Video, Prentice–Hall, ISBN 978-0-13-211913-9
• Gregg, W. David (1977), Analog & Digital Communication, John Wiley, ISBN 978-0-471-32661-8
• Stein, Seymour; Jones, J. Jay (1967), Modern Communication Principles, McGraw–Hill,

ISBN 978-0-07-061003-3

http://en.wikipedia.org/w/index.php?title=Robert_M._Gray
http://en.wikipedia.org/w/index.php?title=Springer_Science%2BBusiness_Media
http://en.wikipedia.org/w/index.php?title=William_Fleetwood_Sheppard
http://en.wikipedia.org/w/index.php?title=Proceedings_of_the_London_Mathematical_Society
http://en.wikipedia.org/w/index.php?title=Bell_System_Technical_Journal
http://en.wikipedia.org/w/index.php?title=Claude_Shannon
http://en.wikipedia.org/w/index.php?title=Proceedings_of_the_IEEE
http://en.wikipedia.org/w/index.php?title=McGraw%E2%80%93Hill
http://en.wikipedia.org/w/index.php?title=IEEE_Transactions_on_Information_Theory
http://en.wikipedia.org/w/index.php?title=Robert_M._Gray
http://en.wikipedia.org/w/index.php?title=IEEE_Transactions_on_Information_Theory
http://en.wikipedia.org/w/index.php?title=IEEE_Communications_Magazine
http://en.wikipedia.org/w/index.php?title=Bernard_Widrow
http://en.wikipedia.org/w/index.php?title=Bernard_Widrow
http://en.wikipedia.org/w/index.php?title=IEEE_Transactions_on_Information_Theory
http://en.wikipedia.org/w/index.php?title=IEEE_Transactions_on_Information_Theory
http://en.wikipedia.org/w/index.php?title=Nariman_Farvardin
http://en.wikipedia.org/w/index.php?title=IEEE_Transactions_on_Information_Theory
http://en.wikipedia.org/w/index.php?title=IEEE_Transactions_on_Information_Theory
http://en.wikipedia.org/w/index.php?title=Gary_Sullivan_%28engineer%29
http://en.wikipedia.org/w/index.php?title=IEEE_Transactions_on_Information_Theory
http://en.wikipedia.org/w/index.php?title=IEEE_Transactions_on_Information_Theory
http://en.wikipedia.org/w/index.php?title=Toby_Berger
http://en.wikipedia.org/w/index.php?title=IEEE_Transactions_on_Information_Theory
http://en.wikipedia.org/w/index.php?title=Toby_Berger
http://en.wikipedia.org/w/index.php?title=IEEE_Transactions_on_Information_Theory
http://en.wikipedia.org/w/index.php?title=IEEE_Transactions_on_Information_Theory
http://en.wikipedia.org/w/index.php?title=Bell_Labs
http://en.wikipedia.org/w/index.php?title=Institute_of_Mathematical_Statistics
http://en.wikipedia.org/w/index.php?title=IEEE_Transactions_on_Information_Theory
http://en.wikipedia.org/w/index.php?title=Robert_M._Gray
http://en.wikipedia.org/w/index.php?title=McGraw%E2%80%93Hill


42

Convolution

Convolution

Convolution of two square pulses: the resulting waveform is a triangular pulse. One of the
functions (in this case g) is first reflected about and then offset by t, making it

. The area under the resulting product gives the convolution at t. The

horizontal axis is for f and g, and t for .

Convolution of a square pulse (as input signal) with the impulse response of an RC circuit
to obtain the output signal waveform. The integral of their product is the area of the

yellow region. In both animations the function g is symmetric, and so is unchanged under
reflection.

In mathematics and, in particular,
functional analysis, convolution is a
mathematical operation on two
functions f and g, producing a third
function that is typically viewed as a
modified version of one of the original
functions, giving the area overlap
between the two functions as a
function of the amount that one of the
original functions is translated.
Convolution is similar to
cross-correlation. It has applications
that include probability, statistics,
computer vision, image and signal
processing, electrical engineering, and
differential equations.

The convolution can be defined for
functions on groups other than
Euclidean space. In particular, the
circular convolution can be defined for
periodic functions (that is, functions on
the circle), and the discrete
convolution can be defined for functions on the set of integers. These generalizations of the convolution have
applications in the field of numerical analysis and numerical linear algebra, and in the design and implementation of
finite impulse response filters in signal processing.

Computing the inverse of the convolution operation is known as deconvolution.

History

The operation

is a particular case of composition products considered by the Italian mathematician Vito Volterra in 1913.[1]

Convolution is also sometimes called "Faltung" (which means folding in German); both Faltung and convolution
were used as early as 1903, though the definition is rather unfamiliar in older uses.[2][3] The term Faltung was
sometimes used in English through the 1940s, before the notion of convolution became widely used, along with
other terms such as composition product, superposition integral, and Carson's integral.[4]
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Definition
The convolution of ƒ and g is written ƒ∗g, using an asterisk or star. It is defined as the integral of the product of the
two functions after one is reversed and shifted. As such, it is a particular kind of integral transform:

       (commutativity)

While the symbol t is used above, it need not represent the time domain. But in that context, the convolution formula
can be described as a weighted average of the function ƒ(τ) at the moment t where the weighting is given by g(−τ)
simply shifted by amount t. As t changes, the weighting function emphasizes different parts of the input function.
More generally, if f and g are complex-valued functions on Rd, then their convolution may be defined as the integral:

Visual explanation of convolution.

1. Express each function in terms of a dummy variable 
2. Reflect one of the functions: → 
3. Add a time-offset, t, which allows to slide along the -axis.
4. Start t at -∞ and slide it all the way to +∞. Wherever the two functions intersect,

find the integral of their product. In other words, compute a sliding,
weighted-average of function , where the weighting function is 

The resulting waveform (not shown here) is the convolution of functions f and
g. If f(t) is a unit impulse, the result of this process is simply g(t), which is
therefore called the impulse response.

Circular convolution
When a function gT is periodic, with period T, then for functions, ƒ, such that ƒ∗gT exists, the convolution is also
periodic and identical to:

where to is an arbitrary choice. The summation is called a periodic summation of the function ƒ.
If gT is a periodic summation of another function, g, then ƒ∗gT is known as a circular, cyclic, or periodic convolution
of ƒ and g.
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Discrete convolution
For complex-valued functions f, g defined on the set Z of integers, the discrete convolution of f and g is given by:

       (commutativity)

When multiplying two polynomials, the coefficients of the product are given by the convolution of the original
coefficient sequences, extended with zeros where necessary to avoid undefined terms; this is known as the Cauchy
product of the coefficients of the two polynomials.

Circular discrete convolution
When a function gN is periodic, with period N, then for functions, f, such that f∗gN exists, the convolution is also
periodic and identical to:

The summation on k is called a periodic summation of the function f.
If gN is a periodic summation of another function, g, then f∗gN is known as a circular convolution of f and g.
When the non-zero durations of both f and g are limited to the interval [0, N − 1], f∗gN reduces to these common
forms:

(Eq.1)

The notation for cyclic convolution denotes convolution over the cyclic group of integers modulo N.
Circular convolution is frequently used to characterized systems analyzed through the lens of the Discrete Fourier
Transform.

Fast convolution algorithms
In many situations, discrete convolutions can be converted to circular convolutions so that fast transforms with a
convolution property can be used to implement the computation. For example, convolution of digit sequences is the
kernel operation in multiplication of multi-digit numbers, which can therefore be efficiently implemented with
transform techniques (Knuth 1997, §4.3.3.C; von zur Gathen & Gerhard 2003, §8.2).
Eq.1 requires N arithmetic operations per output value and N2 operations for N outputs. That can be significantly
reduced with any of several fast algorithms. Digital signal processing and other applications typically use fast
convolution algorithms to reduce the cost of the convolution to O(N log N) complexity.
The most common fast convolution algorithms use fast Fourier transform (FFT) algorithms via the circular 
convolution theorem. Specifically, the circular convolution of two finite-length sequences is found by taking an FFT 
of each sequence, multiplying pointwise, and then performing an inverse FFT. Convolutions of the type defined 
above are then efficiently implemented using that technique in conjunction with zero-extension and/or discarding 
portions of the output. Other fast convolution algorithms, such as the Schönhage–Strassen algorithm, use fast Fourier
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transforms in other rings.

Domain of definition
The convolution of two complex-valued functions on Rd

is well-defined only if ƒ and g decay sufficiently rapidly at infinity in order for the integral to exist. Conditions for
the existence of the convolution may be tricky, since a blow-up in g at infinity can be easily offset by sufficiently
rapid decay in ƒ. The question of existence thus may involve different conditions on ƒ and g.

Compactly supported functions
If ƒ and g are compactly supported continuous functions, then their convolution exists, and is also compactly
supported and continuous (Hörmander). More generally, if either function (say ƒ) is compactly supported and the
other is locally integrable, then the convolution ƒ∗g is well-defined and continuous.

Integrable functions
The convolution of ƒ and g exists if ƒ and g are both Lebesgue integrable functions (in L1(Rd)), and in this case ƒ∗g is
also integrable (Stein & Weiss 1971, Theorem 1.3). This is a consequence of Tonelli's theorem. Likewise, if
ƒ ∈ L1(Rd) and g ∈ Lp(Rd) where 1 ≤ p ≤ ∞, then ƒ∗g ∈ Lp(Rd) and

In the particular case p= 1, this shows that L1 is a Banach algebra under the convolution (and equality of the two
sides holds if f and g are non-negative almost everywhere).
More generally, Young's inequality implies that the convolution is a continuous bilinear map between suitable Lp

spaces. Specifically, if 1 ≤ p,q,r ≤ ∞ satisfy

then

so that the convolution is a continuous bilinear mapping from Lp×Lq to Lr.

Functions of rapid decay
In addition to compactly supported functions and integrable functions, functions that have sufficiently rapid decay at
infinity can also be convolved. An important feature of the convolution is that if ƒ and g both decay rapidly, then ƒ∗g
also decays rapidly. In particular, if ƒ and g are rapidly decreasing functions, then so is the convolution ƒ∗g.
Combined with the fact that convolution commutes with differentiation (see Properties), it follows that the class of
Schwartz functions is closed under convolution.
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Distributions
Under some circumstances, it is possible to define the convolution of a function with a distribution, or of two
distributions. If ƒ is a compactly supported function and g is a distribution, then ƒ∗g is a smooth function defined by a
distributional formula analogous to

More generally, it is possible to extend the definition of the convolution in a unique way so that the associative law

remains valid in the case where ƒ is a distribution, and g a compactly supported distribution (Hörmander 1983, §4.2).

Measures
The convolution of any two Borel measures μ and ν of bounded variation is the measure λ defined by

This agrees with the convolution defined above when μ and ν are regarded as distributions, as well as the
convolution of L1 functions when μ and ν are absolutely continuous with respect to the Lebesgue measure.
The convolution of measures also satisfies the following version of Young's inequality

where the norm is the total variation of a measure. Because the space of measures of bounded variation is a Banach
space, convolution of measures can be treated with standard methods of functional analysis that may not apply for
the convolution of distributions.

Properties

Algebraic properties
The convolution defines a product on the linear space of integrable functions. This product satisfies the following
algebraic properties, which formally mean that the space of integrable functions with the product given by
convolution is a commutative algebra without identity (Strichartz 1994, §3.3). Other linear spaces of functions, such
as the space of continuous functions of compact support, are closed under the convolution, and so also form
commutative algebras.
Commutativity

Associativity

Distributivity

Associativity with scalar multiplication

for any real (or complex) number .
Multiplicative identity
No algebra of functions possesses an identity for the convolution. The lack of identity is typically not a major 
inconvenience, since most collections of functions on which the convolution is performed can be convolved with a

http://en.wikipedia.org/w/index.php?title=Borel_measure
http://en.wikipedia.org/w/index.php?title=Bounded_variation
http://en.wikipedia.org/w/index.php?title=Total_variation
http://en.wikipedia.org/w/index.php?title=Banach_space
http://en.wikipedia.org/w/index.php?title=Banach_space
http://en.wikipedia.org/w/index.php?title=Functional_analysis
http://en.wikipedia.org/w/index.php?title=Linear_space
http://en.wikipedia.org/w/index.php?title=Commutative_algebra
http://en.wikipedia.org/w/index.php?title=Identity_element
http://en.wikipedia.org/w/index.php?title=Closure_%28mathematics%29
http://en.wikipedia.org/w/index.php?title=Commutativity
http://en.wikipedia.org/w/index.php?title=Associativity
http://en.wikipedia.org/w/index.php?title=Distributivity
http://en.wikipedia.org/w/index.php?title=Multiplicative_identity


Convolution 47

delta distribution or, at the very least (as is the case of L1) admit approximations to the identity. The linear space of
compactly supported distributions does, however, admit an identity under the convolution. Specifically,

where δ is the delta distribution.
Inverse element
Some distributions have an inverse element for the convolution, S(−1), which is defined by

The set of invertible distributions forms an abelian group under the convolution.
Complex conjugation

Integration
If ƒ and g are integrable functions, then the integral of their convolution on the whole space is simply obtained as the
product of their integrals:

This follows from Fubini's theorem. The same result holds if ƒ and g are only assumed to be nonnegative measurable
functions, by Tonelli's theorem.

Differentiation
In the one-variable case,

where d/dx is the derivative. More generally, in the case of functions of several variables, an analogous formula
holds with the partial derivative:

A particular consequence of this is that the convolution can be viewed as a "smoothing" operation: the convolution
of ƒ and g is differentiable as many times as ƒ and g are together.
These identities hold under the precise condition that ƒ and g are absolutely integrable and at least one of them has an
absolutely integrable (L1) weak derivative, as a consequence of Young's inequality. For instance, when ƒ is
continuously differentiable with compact support, and g is an arbitrary locally integrable function,

These identities also hold much more broadly in the sense of tempered distributions if one of ƒ or g is a compactly
supported distribution or a Schwartz function and the other is a tempered distribution. On the other hand, two
positive integrable and infinitely differentiable functions may have a nowhere continuous convolution.
In the discrete case, the difference operator D ƒ(n) = ƒ(n + 1) − ƒ(n) satisfies an analogous relationship:
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Convolution theorem
The convolution theorem states that

where denotes the Fourier transform of , and is a constant that depends on the specific normalization
of the Fourier transform (see “Properties of the Fourier transform”). Versions of this theorem also hold for the
Laplace transform, two-sided Laplace transform, Z-transform and Mellin transform.
See also the less trivial Titchmarsh convolution theorem.

Translation invariance
The convolution commutes with translations, meaning that

where τxƒ is the translation of the function ƒ by x defined by

If ƒ is a Schwartz function, then τxƒ is the convolution with a translated Dirac delta function τxƒ = ƒ∗τx δ. So
translation invariance of the convolution of Schwartz functions is a consequence of the associativity of convolution.
Furthermore, under certain conditions, convolution is the most general translation invariant operation. Informally
speaking, the following holds
• Suppose that S is a linear operator acting on functions which commutes with translations: S(τxƒ) = τx(Sƒ) for all x.

Then S is given as convolution with a function (or distribution) gS; that is Sƒ = gS∗ƒ.
Thus any translation invariant operation can be represented as a convolution. Convolutions play an important role in
the study of time-invariant systems, and especially LTI system theory. The representing function gS is the impulse
response of the transformation S.
A more precise version of the theorem quoted above requires specifying the class of functions on which the
convolution is defined, and also requires assuming in addition that S must be a continuous linear operator with
respect to the appropriate topology. It is known, for instance, that every continuous translation invariant continuous
linear operator on L1 is the convolution with a finite Borel measure. More generally, every continuous translation
invariant continuous linear operator on Lp for 1 ≤ p < ∞ is the convolution with a tempered distribution whose
Fourier transform is bounded. To wit, they are all given by bounded Fourier multipliers.

Convolutions on groups
If G is a suitable group endowed with a measure λ, and if f and g are real or complex valued integrable functions
on G, then we can define their convolution by

In typical cases of interest G is a locally compact Hausdorff topological group and λ is a (left-) Haar measure. In that
case, unless G is unimodular, the convolution defined in this way is not the same as . The
preference of one over the other is made so that convolution with a fixed function g commutes with left translation in
the group:

Furthermore, the convention is also required for consistency with the definition of the convolution of measures given
below. However, with a right instead of a left Haar measure, the latter integral is preferred over the former.
On locally compact abelian groups, a version of the convolution theorem holds: the Fourier transform of a 
convolution is the pointwise product of the Fourier transforms. The circle group T with the Lebesgue measure is an
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immediate example. For a fixed g in L1(T), we have the following familiar operator acting on the Hilbert space
L2(T):

The operator T is compact. A direct calculation shows that its adjoint T* is convolution with

By the commutativity property cited above, T is normal: T*T = TT*. Also, T commutes with the translation
operators. Consider the family S of operators consisting of all such convolutions and the translation operators. Then
S is a commuting family of normal operators. According to spectral theory, there exists an orthonormal basis {hk}
that simultaneously diagonalizes S. This characterizes convolutions on the circle. Specifically, we have

which are precisely the characters of T. Each convolution is a compact multiplication operator in this basis. This can
be viewed as a version of the convolution theorem discussed above.
A discrete example is a finite cyclic group of order n. Convolution operators are here represented by circulant
matrices, and can be diagonalized by the discrete Fourier transform.
A similar result holds for compact groups (not necessarily abelian): the matrix coefficients of finite-dimensional
unitary representations form an orthonormal basis in L2 by the Peter–Weyl theorem, and an analog of the
convolution theorem continues to hold, along with many other aspects of harmonic analysis that depend on the
Fourier transform.

Convolution of measures
Let G be a topological group. If μ and ν are finite Borel measures on a group G, then their convolution μ∗ν is
defined by

for each measurable subset E of G. The convolution is also a finite measure, whose total variation satisfies

In the case when G is locally compact with (left-)Haar measure λ, and μ and ν are absolutely continuous with respect
to a λ, so that each has a density function, then the convolution μ∗ν is also absolutely continuous, and its density
function is just the convolution of the two separate density functions.
If μ and ν are probability measures, then the convolution μ∗ν is the probability distribution of the sum X + Y of two
independent random variables X and Y whose respective distributions are μ and ν.

Bialgebras
Let (X, Δ, ∇, ε, η) be a bialgebra with comultiplication Δ, multiplication ∇, unit η, and counit ε. The convolution is a
product defined on the endomorphism algebra End(X) as follows. Let φ, ψ ∈ End(X), that is, φ,ψ : X → X are
functions that respect all algebraic structure of X, then the convolution φ∗ψ is defined as the composition

The convolution appears notably in the definition of Hopf algebras (Kassel 1995, §III.3). A bialgebra is a Hopf
algebra if and only if it has an antipode: an endomorphism S such that
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Applications

Blurring of an image using the Gaussian function, implemented using a sequence of
one-dimensional convolutions; see Gaussian blur

Convolution and related operations are
found in many applications of
engineering and mathematics.
• In electrical engineering, the

convolution of one function (the
input signal) with a second function
(the impulse response) gives the
output of a linear time-invariant
system (LTI). At any given
moment, the output is an
accumulated effect of all the prior
values of the input function, with
the most recent values typically
having the most influence
(expressed as a multiplicative factor). The impulse response function provides that factor as a function of the
elapsed time since each input value occurred.

• In digital signal processing and image processing applications, the entire input function is often available for
computing every sample of the output function. In that case, the constraint that each output is the effect of only
prior inputs can be relaxed.

•• Convolution amplifies or attenuates each frequency component of the input independently of the other
components.

• In statistics, as noted above, a weighted moving average is a convolution.
• In probability theory, the probability distribution of the sum of two independent random variables is the

convolution of their individual distributions.
• In optics, many kinds of "blur" are described by convolutions. A shadow (e.g., the shadow on the table when you

hold your hand between the table and a light source) is the convolution of the shape of the light source that is
casting the shadow and the object whose shadow is being cast. An out-of-focus photograph is the convolution of
the sharp image with the shape of the iris diaphragm. The photographic term for this is bokeh.

• Similarly, in digital image processing, convolutional filtering plays an important role in many important
algorithms in edge detection and related processes.

• In linear acoustics, an echo is the convolution of the original sound with a function representing the various
objects that are reflecting it.

• In artificial reverberation (digital signal processing, pro audio), convolution is used to map the impulse response
of a real room on a digital audio signal (see previous and next point for additional information).

• In time-resolved fluorescence spectroscopy, the excitation signal can be treated as a chain of delta pulses, and the
measured fluorescence is a sum of exponential decays from each delta pulse.

•• In radiotherapy treatment planning systems, most part of all modern codes of calculation applies a
convolution-superposition algorithm.

• In physics, wherever there is a linear system with a "superposition principle", a convolution operation makes an
appearance. For instance, given a function that describes an electric charge distribution and the function that gives
the electric potential of a point charge, then the potential of the charge distribution is the convolution of these two
functions.

• In kernel density estimation, a distribution is estimated from sample points by convolution with a kernel, such as
an isotropic Gaussian. (Diggle 1995).
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• In computational fluid dynamics, the large eddy simulation (LES) turbulence model uses the convolution
operation to lower the range of length scales necessary in computation thereby reducing computational cost.

Notes
[1] According to [Lothar von Wolfersdorf (2000), "Einige Klassen quadratischer Integralgleichungen", Sitzungsberichte der Sächsischen

Akademie der Wissenschaften zu Leipzig, Mathematisch-naturwissenschaftliche Klasse, volume 128, number 2, 6–7], the source is Volterra,
Vito (1913), "Leçons sur les fonctions de linges". Gauthier-Villars, Paris 1913.

[2] John Hilton Grace and Alfred Young (1903), The algebra of invariants (http:/ / books. google. com/ books?id=NIe4AAAAIAAJ&
pg=PA40), Cambridge University Press, p. 40,

[3] Leonard Eugene Dickson (1914), Algebraic invariants (http:/ / books. google. com/ books?id=LRGoAAAAIAAJ& pg=PA85), J. Wiley,
p. 85,

[4] R. N. Bracewell (2005), "Early work on imaging theory in radio astronomy" (http:/ / books. google. com/ books?id=v2SqL0zCrwcC&
pg=PA172), in W. T. Sullivan, The Early Years of Radio Astronomy: Reflections Fifty Years After Jansky's Discovery, Cambridge University
Press, p. 172, ISBN 9780521616027,
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External links
• Earliest Uses: The entry on Convolution has some historical information. (http:/ / jeff560. tripod. com/ c. html)
• Convolution (http:/ / rkb. home. cern. ch/ rkb/ AN16pp/ node38. html#SECTION000380000000000000000), on

The Data Analysis BriefBook (http:/ / rkb. home. cern. ch/ rkb/ titleA. html)
• http:/ / www. jhu. edu/ ~signals/ convolve/ index. html Visual convolution Java Applet
• http:/ / www. jhu. edu/ ~signals/ discreteconv2/ index. html Visual convolution Java Applet for discrete-time

functions
• Lectures on Image Processing: A collection of 18 lectures in pdf format from Vanderbilt University. Lecture 7 is

on 2-D convolution. (http:/ / www. archive. org/ details/ Lectures_on_Image_Processing), by Alan Peters
• http:/ / www. vuse. vanderbilt. edu/ ~rap2/ EECE253/ EECE253_01_Intro. pdf

• Convolution Kernel Mask Operation Interactive tutorial (http:/ / micro. magnet. fsu. edu/ primer/ java/
digitalimaging/ processing/ kernelmaskoperation/ )

• Convolution (http:/ / mathworld. wolfram. com/ Convolution. html) at MathWorld
• GNU C-Graph (http:/ / www. gnu. org/ software/ c-graph): Free Software for visualizing convolution
• Freeverb3 Impulse Response Processor (http:/ / freeverb3. sourceforge. net/ ): Opensource zero latency impulse

response processor with VST plugins
• Stanford University CS 178 interactive Flash demo (http:/ / graphics. stanford. edu/ courses/ cs178/ applets/

convolution. html) showing how spatial convolution works.
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Appendix: Systems & Laplace

Ordinary differential equation
In mathematics, an ordinary differential equation (ODE) is an equation in which there is only one independent
variable and one or more derivatives of a dependent variable with respect to the independent variable, so that all the
derivatives occurring in the equation are ordinary derivatives.[1][2]

A simple example is Newton's second law of motion—the relationship between the displacement and the time of the
object under the force—which leads to the differential equation

for the motion of a particle of constant mass m. In general, the force F depends upon the position x(t) of the particle
at time t, and thus the unknown function x(t) appears on both sides of the differential equation, as is indicated in the
notation F(x(t)).[3][4][5][6]

Ordinary differential equations are distinguished from partial differential equations, which involve partial derivatives
of functions of several variables.
Ordinary differential equations arise in many different contexts including geometry, mechanics, astronomy and
population modelling. Many mathematicians have studied differential equations and contributed to the field,
including Newton, Leibniz, the Bernoulli family, Riccati, Clairaut, d'Alembert and Euler.
Much study has been devoted to the solution of ordinary differential equations. In the case where the equation is
linear, it can be solved by analytical methods. Unfortunately, most of the interesting differential equations are
non-linear and, with a few exceptions, cannot be solved exactly. Approximate solutions are arrived at using
computer approximations (see numerical ordinary differential equations).

The trajectory of a projectile launched from a cannon follows a curve
determined by an ordinary differential equation that is derived from

Newton's second law.

Definitions

Ordinary differential equation

Let y be an unknown function

in x with the nth derivative of y, and let F be a
given function

then an equation of the form

is called an ordinary differential equation of order n.[7][8] If y is an unknown vector valued function

,
it is called a system of ordinary differential equations of dimension m (in this case, F : ℝm(n+1)→ ℝm).
More generally, an implicit ordinary differential equation of order n takes the form
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where F : ℝn+2→ ℝ depends on y(n).[9] To distinguish the above case from this one, an equation of the form

is called an explicit differential equation.
A differential equation not depending on x is called autonomous.
A differential equation is said to be linear if F can be written as a linear combination of the derivatives of y together
with a constant term, all possibly depending on x:

with ai(x) and r(x) continuous functions in x.[10][11][12] The function r(x) is called the source term; if r(x)=0 then the
linear differential equation is called homogeneous, otherwise it is called non-homogeneous or
inhomogeneous.[13][14]

Solutions
Given a differential equation

a function u: I ⊂ R → R is called the solution or integral curve for F, if u is n-times differentiable on I, and

Given two solutions u: J ⊂ R → R and v: I ⊂ R → R, u is called an extension of v if I ⊂ J and

A solution which has no extension is called a maximal solution. A solution defined on all of R is called a global
solution.
A general solution of an n-th order equation is a solution containing n arbitrary independent constants of
integration. A particular solution is derived from the general solution by setting the constants to particular values,
often chosen to fulfill set 'initial conditions or boundary conditions'.[15] A singular solution is a solution which
cannot be obtained by assigning definite values to the arbitrary constants in the general solution.[16]

Applications
Ordinary differential equations describe the basic mathematical theory and methods of the natural sciences and social
sciences which govern objects and phenomena, evolution and variation. Many principles and rules in physical,
chemical, biological, engineering, aerospace, medical, economic and financial fields of study can be described by the
appropriate ordinary differential equations, such as Newtons laws of motion, Newton's law of universal gravitation,
the law of conservation of energy, the law of population growth, ecological population competition, infectious
diseases, genetic variation, stock trends, interest rates and the market equilibrium price changes. People attribute the
understanding and analysis of these problems to the study of the corresponding ordinary differential equations to
describe the mathematical model. Therefore, the theory and methods of ordinary differential equations are widely
used in various fields of social science.
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Existence and uniqueness of solutions
There are several theorems that establish existence and uniqueness of solutions to initial value problems involving
ODEs both locally and globally. The two main theorems are

theorem assumption conclusion

Peano existence theorem F continuous local existence only

Picard–Lindelöf theorem F Lipschitz continuous local existence and uniqueness

which are both local results.

Global uniqueness and maximum domain of solution
When the hypothesis of the Picard–Lindelöf theorem are satisfied, then local existence and uniqueness can be
extended to a global result. More precisely:

Theorem[17] For each initial condition there exists an unique maximum (possibly infinite) open
interval

such that any solution which satisfies this initial condition is a restriction of the solution which satisfies this
initial condition with domain .

In the case that , there are exactly two possibilities

• explosion in finite time: 

• leaves domain of definition: 

where is the open set in which F is defined, and is its boundary.
Note that the maximum domain of the solution
•• is always an interval (to have uniqueness)
• may be smaller than 
• may depend on the specific choice of 

Example 
This means that , which is and therefore Lipschitz continuous for all y, satisfying the
Picard–Lindelöf theorem.
Even in such a simple setting, the maximum domain of solution cannot be all , since the solution is

   

which has maximum domain:

   

This shows clearly that the maximum interval may depend on the initial conditions.

We could take the domain of y as being , but this would lead to a domain that is not an interval,

so that the side opposite to the initial condition would be disconnected from the initial condition, and therefore
not uniquely determined by it.
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The maximum domain is not because , which is one of the two possible cases

according to the above theorem.

Reduction to a first order system
Any differential equation of order n can be written as a system of n first-order differential equations. Given an
explicit ordinary differential equation of order n (and dimension 1),

define a new family of unknown functions

for i from 1 to n.
The original differential equation can be rewritten as the system of differential equations with order 1 and dimension
n given by

which can be written concisely in vector notation as

with

and

Linear ordinary differential equations
A well understood particular class of differential equations is linear differential equations. We can always reduce an
explicit linear differential equation of any order to a system of differential equations of order 1

which we can write concisely using matrix and vector notation as

with
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Homogeneous equations
The set of solutions for a system of homogeneous linear differential equations of order 1 and dimension n

forms an n-dimensional vector space. Given a basis for this vector space , which is called a
fundamental system, every solution can be written as

The n × n matrix

is called fundamental matrix. In general there is no method to explicitly construct a fundamental system, but if one
solution is known d'Alembert reduction can be used to reduce the dimension of the differential equation by one.

Nonhomogeneous equations
The set of solutions for a system of inhomogeneous linear differential equations of order 1 and dimension n

can be constructed by finding the fundamental system to the corresponding homogeneous
equation and one particular solution to the inhomogeneous equation. Every solution to
nonhomogeneous equation can then be written as

A particular solution to the nonhomogeneous equation can be found by the method of undetermined coefficients or
the method of variation of parameters.
Concerning second order linear ordinary differential equations, it is well known that

So, if is a solution of: , then such that: 

So, if is a solution of: ; then a particular solution of , is
given by:

.[18]

Fundamental systems for homogeneous equations with constant coefficients
If a system of homogeneous linear differential equations has constant coefficients

then we can explicitly construct a fundamental system. The fundamental system can be written as a matrix
differential equation

with solution as a matrix exponential

which is a fundamental matrix for the original differential equation. To explicitly calculate this expression we first
transform A into Jordan normal form

http://en.wikipedia.org/w/index.php?title=Vector_space
http://en.wikipedia.org/w/index.php?title=D%27Alembert_reduction
http://en.wikipedia.org/w/index.php?title=Method_of_undetermined_coefficients
http://en.wikipedia.org/w/index.php?title=Method_of_variation_of_parameters
http://en.wikipedia.org/w/index.php?title=Matrix_differential_equation
http://en.wikipedia.org/w/index.php?title=Matrix_differential_equation
http://en.wikipedia.org/w/index.php?title=Matrix_exponential
http://en.wikipedia.org/w/index.php?title=Jordan_normal_form


Ordinary differential equation 58

and then evaluate the Jordan blocks

of J separately as

General Case
To solve

y'(x) = A(x)y(x)+b(x) with y(x0) = y
0 

(here y(x) is a vector or matrix, and A(x) is a matrix),
let U(x) be the solution of y'(x) = A(x)y(x) with U(x0) = I (the identity matrix). After substituting y(x) = U(x)z(x), the
equation y'(x) = A(x)y(x)+b(x) simplifies to U(x)z'(x) = b(x). Thus,

If A(x1) commutes with A(x2) for all x1 and x2, then (and thus ),

but in the general case there is no closed form solution, and an approximation method such as Magnus expansion
may have to be used.

Theories of ODEs

Singular solutions
The theory of singular solutions of ordinary and partial differential equations was a subject of research from the time
of Leibniz, but only since the middle of the nineteenth century did it receive special attention. A valuable but
little-known work on the subject is that of Houtain (1854). Darboux (starting in 1873) was a leader in the theory, and
in the geometric interpretation of these solutions he opened a field which was worked by various writers, notably
Casorati and Cayley. To the latter is due (1872) the theory of singular solutions of differential equations of the first
order as accepted circa 1900.

Reduction to quadratures
The primitive attempt in dealing with differential equations had in view a reduction to quadratures. As it had been
the hope of eighteenth-century algebraists to find a method for solving the general equation of the th degree, so it
was the hope of analysts to find a general method for integrating any differential equation. Gauss (1799) showed,
however, that the differential equation meets its limitations very soon unless complex numbers are introduced. Hence
analysts began to substitute the study of functions, thus opening a new and fertile field. Cauchy was the first to
appreciate the importance of this view. Thereafter the real question was to be, not whether a solution is possible by
means of known functions or their integrals, but whether a given differential equation suffices for the definition of a
function of the independent variable or variables, and if so, what are the characteristic properties of this function.
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Fuchsian theory
Two memoirs by Fuchs (Crelle, 1866, 1868), inspired a novel approach, subsequently elaborated by Thomé and
Frobenius. Collet was a prominent contributor beginning in 1869, although his method for integrating a non-linear
system was communicated to Bertrand in 1868. Clebsch (1873) attacked the theory along lines parallel to those
followed in his theory of Abelian integrals. As the latter can be classified according to the properties of the
fundamental curve which remains unchanged under a rational transformation, so Clebsch proposed to classify the
transcendent functions defined by the differential equations according to the invariant properties of the
corresponding surfaces f = 0 under rational one-to-one transformations.

Lie's theory
From 1870 Sophus Lie's work put the theory of differential equations on a more satisfactory foundation. He showed
that the integration theories of the older mathematicians can, by the introduction of what are now called Lie groups,
be referred to a common source; and that ordinary differential equations which admit the same infinitesimal
transformations present comparable difficulties of integration. He also emphasized the subject of transformations of
contact.
Lie's group theory of differential equations, has been certified, namely: (1) that it unifies the many ad hoc methods
known for solving differential equations, and (2) that it provides powerful new ways to find solutions. The theory
has applications to both ordinary and partial differential equations.[19]

A general approach to solve DE's uses the symmetry property of differential equations, the continuous infinitesimal
transformations of solutions to solutions (Lie theory). Continuous group theory, Lie algebras and differential
geometry are used to understand the structure of linear and nonlinear (partial) differential equations for generating
integrable equations, to find its Lax pairs, recursion operators, Bäcklund transform and finally finding exact analytic
solutions to the DE.
Symmetry methods have been recognized to study differential equations arising in mathematics, physics,
engineering, and many other disciplines.

Sturm–Liouville theory
Sturm–Liouville theory is a theory of eigenvalues and eigenfunctions of linear operators defined in terms of
second-order homogeneous linear equations, and is useful in the analysis of certain partial differential equations.

Software for ODE solving
• FuncDesigner (free license: BSD, uses Automatic differentiation, also can be used online via Sage-server [20])
• odeint [21] - A C++ library for solving ordinary differential equations numerically
• VisSim [22] - a visual language for differential equation solving
• Mathematical Assistant on Web [23] online solving first order (linear and with separated variables) and second

order linear differential equations (with constant coefficients), including intermediate steps in the solution.
• DotNumerics: Ordinary Differential Equations for C# and VB.NET [24] Initial-value problem for nonstiff and stiff

ordinary differential equations (explicit Runge-Kutta, implicit Runge-Kutta, Gear’s BDF and Adams-Moulton).
• Online experiments with JSXGraph [25]

• Maxima computer algebra system (GPL)
• COPASI a free (Artistic License 2.0) software package for the integration and analysis of ODEs.
• MATLAB a matrix-programming software (MATrix LABoratory)
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Notes
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[5] Halliday & Resnick (1977, p. 78)
[6][6] Tipler (1991, pp. 78-83)
[7][7] Harper (1976, p. 127)
[8][8] Kreyszig (1972, p. 2)
[9][9] Simmons (1972, p. 3)
[10][10] Harper (1976, p. 127)
[11][11] Kreyszig (1972, p. 24)
[12][12] Simmons (1972, p. 47)
[13][13] Harper (1976, p. 128)
[14][14] Kreyszig (1972, p. 24)
[15][15] Kreyszig (1972, p. 78)
[16][16] Kreyszig (1972, p. 4)
[17][17] Boscain; Chitour 2011, p.21
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Laplace transform applied to differential
equations
The Laplace transform is a powerful integral transform used to switch a function from the time domain to the
S-domain. The use of Laplace transform makes it much easier to solve linear differential equations with given initial
conditions.
First consider the following relations:

Consider the following differential equation:

This equation is equivalent to

which is equivalent to

Note that the are initial conditions.
The solution for f(t) will be given by applying the inverse Laplace transform to 

An example
We want to solve

with initial conditions f(0) = 0 and f ′(0)=0.
We note that

and we get

So this is equivalent to

We deduce

So we apply the Laplace inverse transform and get
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Fourier transform
The Fourier transform is a mathematical operation with many applications in physics and engineering that
expresses a mathematical function of time as a function of frequency, known as its frequency spectrum; Fourier's
theorem guarantees that this can always be done. For instance, the transform of a musical chord made up of pure
notes (without overtones) expressed as amplitude as a function of time, is a mathematical representation of the
amplitudes and phases of the individual notes that make it up. The function of time is often called the time domain
representation, and the frequency spectrum the frequency domain representation. The inverse Fourier transform
expresses a frequency domain function in the time domain. Each value of the function is usually expressed as a
complex number (called complex amplitude) that can be interpreted as a magnitude and a phase component. The
term "Fourier transform" refers to both the transform operation and to the complex-valued function it produces.
In the case of a periodic function, such as a continuous, but not necessarily sinusoidal, musical tone, the Fourier
transform can be simplified to the calculation of a discrete set of complex amplitudes, called Fourier series
coefficients. Also, when a time-domain function is sampled to facilitate storage or computer-processing, it is still
possible to recreate a version of the original Fourier transform according to the Poisson summation formula, also
known as discrete-time Fourier transform. These topics are addressed in separate articles. For an overview of those
and other related operations, refer to Fourier analysis or List of Fourier-related transforms.

Definition
There are several common conventions for defining the Fourier transform of an integrable function ƒ : R → C
(Kaiser 1994). This article will use the definition:

   for every real number ξ.

When the independent variable x represents time (with SI unit of seconds), the transform variable ξ  represents
frequency (in hertz). Under suitable conditions, ƒ can be reconstructed from by the inverse transform:

   for every real number x.

For other common conventions and notations, including using the angular frequency ω instead of the frequency ξ,
see Other conventions and Other notations below. The Fourier transform on Euclidean space is treated separately, in
which the variable x often represents position and ξ momentum.
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Introduction
The motivation for the Fourier transform comes from the study of Fourier series. In the study of Fourier series,
complicated functions are written as the sum of simple waves mathematically represented by sines and cosines. Due
to the properties of sine and cosine, it is possible to recover the amplitude of each wave in the sum by an integral. In
many cases it is desirable to use Euler's formula, which states that e2πiθ = cos 2πθ + i sin 2πθ, to write Fourier series
in terms of the basic waves e2πiθ. This has the advantage of simplifying many of the formulas involved, and provides
a formulation for Fourier series that more closely resembles the definition followed in this article. Re-writing sines
and cosines as complex exponentials makes it necessary for the Fourier coefficients to be complex valued. The usual
interpretation of this complex number is that it gives both the amplitude (or size) of the wave present in the function
and the phase (or the initial angle) of the wave. These complex exponentials sometimes contain negative
"frequencies". If θ is measured in seconds, then the waves e2πiθ and e−2πiθ both complete one cycle per second, but
they represent different frequencies in the Fourier transform. Hence, frequency no longer measures the number of
cycles per unit time, but is still closely related.
There is a close connection between the definition of Fourier series and the Fourier transform for functions ƒ which
are zero outside of an interval. For such a function, we can calculate its Fourier series on any interval that includes
the points where ƒ is not identically zero. The Fourier transform is also defined for such a function. As we increase
the length of the interval on which we calculate the Fourier series, then the Fourier series coefficients begin to look
like the Fourier transform and the sum of the Fourier series of ƒ begins to look like the inverse Fourier transform. To
explain this more precisely, suppose that T is large enough so that the interval [−T/2,T/2] contains the interval on
which ƒ is not identically zero. Then the n-th series coefficient cn is given by:

Comparing this to the definition of the Fourier transform, it follows that since ƒ(x) is zero outside
[−T/2,T/2]. Thus the Fourier coefficients are just the values of the Fourier transform sampled on a grid of width 1/T.
As T increases the Fourier coefficients more closely represent the Fourier transform of the function.
Under appropriate conditions, the sum of the Fourier series of ƒ will equal the function ƒ. In other words, ƒ can be
written:

where the last sum is simply the first sum rewritten using the definitions ξn = n/T, and Δξ = (n + 1)/T − n/T = 1/T.
This second sum is a Riemann sum, and so by letting T → ∞ it will converge to the integral for the inverse Fourier
transform given in the definition section. Under suitable conditions this argument may be made precise (Stein &
Shakarchi 2003).
In the study of Fourier series the numbers cn could be thought of as the "amount" of the wave present in the Fourier
series of ƒ. Similarly, as seen above, the Fourier transform can be thought of as a function that measures how much
of each individual frequency is present in our function ƒ, and we can recombine these waves by using an integral (or
"continuous sum") to reproduce the original function.

Example
The following images provide a visual illustration of how the Fourier transform measures whether a frequency is 
present in a particular function. The function depicted oscillates at 3 hertz (if t measures 
seconds) and tends quickly to 0. (Note: the second term in this equation is an envelope function that shapes the 
continuous sinusoid into a short pulse. Its general form is a Gaussian function). This function was specially chosen to 
have a real Fourier transform which can easily be plotted. The first image contains its graph. In order to calculate 

we must integrate e−2πi(3t)ƒ(t). The second image shows the plot of the real and imaginary parts of this
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function. The real part of the integrand is almost always positive, this is because when ƒ(t) is negative, then the real
part of e−2πi(3t) is negative as well. Because they oscillate at the same rate, when ƒ(t) is positive, so is the real part of
e−2πi(3t). The result is that when you integrate the real part of the integrand you get a relatively large number (in this
case 0.5). On the other hand, when you try to measure a frequency that is not present, as in the case when we look at 
, the integrand oscillates enough so that the integral is very small. The general situation may be a bit more
complicated than this, but this in spirit is how the Fourier transform measures how much of an individual frequency
is present in a function ƒ(t).

Original function showing
oscillation 3 hertz.

Real and imaginary parts of
integrand for Fourier transform

at 3 hertz

Real and imaginary parts of
integrand for Fourier transform

at 5 hertz

Fourier transform with 3 and 5
hertz labeled.

Properties of the Fourier transform
Here we assume f(x), g(x), and h(x) are integrable functions, are Lebesgue-measurable on the real line, and satisfy:

We denote the Fourier transforms of these functions by , , and respectively.

Basic properties
The Fourier transform has the following basic properties: (Pinsky 2002).
Linearity

For any complex numbers a and b, if h(x) = aƒ(x) + bg(x), then 
Translation

For any real number x0, if h(x) = ƒ(x − x0), then 
Modulation

For any real number ξ0, if h(x) = e2πixξ0ƒ(x), then .
Scaling

For a non-zero real number a, if h(x) = ƒ(ax), then .     The case a = −1 leads to the

time-reversal property, which states: if h(x) = ƒ(−x), then .
Conjugation

If , then 

In particular, if ƒ is real, then one has the reality condition 

And if ƒ is purely imaginary, then 
Duality

If then 
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Convolution

If , then 

Uniform continuity and the Riemann–Lebesgue lemma

The rectangular function is Lebesgue integrable.

The sinc function, which is the Fourier transform
of the rectangular function, is bounded and
continuous, but not Lebesgue integrable.

The Fourier transform may be defined in some cases for non-integrable
functions, but the Fourier transforms of integrable functions have
several strong properties.

The Fourier transform of any integrable function ƒ is uniformly
continuous and (Katznelson 1976). By the
Riemann–Lebesgue lemma (Stein & Weiss 1971),

Furthermore, is bounded and continuous, but need not be
integrable. For example, the Fourier transform of the rectangular
function, which is integrable, is the sinc function, which is not
Lebesgue integrable, because its improper integrals behave
analogously to the alternating harmonic series, in converging to a sum
without being absolutely convergent.
It is not generally possible to write the inverse transform as a Lebesgue
integral. However, when both ƒ and are integrable, the inverse
equality

holds almost everywhere. That is, the Fourier transform is injective on
L1(R). (But if ƒ is continuous, then equality holds for every x.)

Plancherel theorem and Parseval's theorem

Let f(x) and g(x) be integrable, and let and be their Fourier transforms. If f(x) and g(x) are also
square-integrable, then we have Parseval's theorem (Rudin 1987, p. 187):

where the bar denotes complex conjugation.
The Plancherel theorem, which is equivalent to Parseval's theorem, states (Rudin 1987, p. 186):

The Plancherel theorem makes it possible to define the Fourier transform for functions in L2(R), as described in
Generalizations below. The Plancherel theorem has the interpretation in the sciences that the Fourier transform
preserves the energy of the original quantity. It should be noted that depending on the author either of these theorems
might be referred to as the Plancherel theorem or as Parseval's theorem.
See Pontryagin duality for a general formulation of this concept in the context of locally compact abelian groups.
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Poisson summation formula
The Poisson summation formula (PSF) is an equation that relates the Fourier series coefficients of the periodic
summation of a function to values of the function's continuous Fourier transform. It has a variety of useful forms that
are derived from the basic one by application of the Fourier transform's scaling and time-shifting properties. The
frequency-domain dual of the standard PSF is also called discrete-time Fourier transform, which leads directly to:

• a popular, graphical, frequency-domain representation of the phenomenon of aliasing, and
• a proof of the Nyquist-Shannon sampling theorem.

Convolution theorem
The Fourier transform translates between convolution and multiplication of functions. If ƒ(x) and g(x) are integrable
functions with Fourier transforms and respectively, then the Fourier transform of the convolution is
given by the product of the Fourier transforms and (under other conventions for the definition of the
Fourier transform a constant factor may appear).
This means that if:

where ∗ denotes the convolution operation, then:

In linear time invariant (LTI) system theory, it is common to interpret g(x) as the impulse response of an LTI system
with input ƒ(x) and output h(x), since substituting the unit impulse for ƒ(x) yields h(x) = g(x). In this case, 
represents the frequency response of the system.
Conversely, if ƒ(x) can be decomposed as the product of two square integrable functions p(x) and q(x), then the
Fourier transform of ƒ(x) is given by the convolution of the respective Fourier transforms and .

Cross-correlation theorem
In an analogous manner, it can be shown that if h(x) is the cross-correlation of ƒ(x) and g(x):

then the Fourier transform of h(x) is:

As a special case, the autocorrelation of function ƒ(x) is:

for which
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Eigenfunctions
One important choice of an orthonormal basis for L2(R) is given by the Hermite functions

where are the "probabilist's" Hermite polynomials, defined by Hen(x) = (−1)nexp(x2/2) Dn exp(−x2/2).
Under this convention for the Fourier transform, we have that

In other words, the Hermite functions form a complete orthonormal system of eigenfunctions for the Fourier
transform on L2(R) (Pinsky 2002). However, this choice of eigenfunctions is not unique. There are only four
different eigenvalues of the Fourier transform (±1 and ±i) and any linear combination of eigenfunctions with the
same eigenvalue gives another eigenfunction. As a consequence of this, it is possible to decompose L2(R) as a direct
sum of four spaces H0, H1, H2, and H3 where the Fourier transform acts on Hek simply by multiplication by ik. This
approach to define the Fourier transform is due to N. Wiener (Duoandikoetxea 2001). Among other properties,
Hermite functions decrease exponentially fast in both frequency and time domains and they are used to define a
generalization of the Fourier transform, namely the fractional Fourier transform used in time-frequency analysis
(Boashash 2003).

Fourier transform on Euclidean space
The Fourier transform can be in any arbitrary number of dimensions n. As with the one-dimensional case, there are
many conventions. For an integrable function ƒ(x), this article takes the definition:

where x and ξ are n-dimensional vectors, and x · ξ is the dot product of the vectors. The dot product is sometimes
written as .
All of the basic properties listed above hold for the n-dimensional Fourier transform, as do Plancherel's and
Parseval's theorem. When the function is integrable, the Fourier transform is still uniformly continuous and the
Riemann–Lebesgue lemma holds. (Stein & Weiss 1971)

Uncertainty principle

Generally speaking, the more concentrated f(x) is, the more spread out its Fourier transform  must be. In
particular, the scaling property of the Fourier transform may be seen as saying: if we "squeeze" a function in x, its
Fourier transform "stretches out" in ξ. It is not possible to arbitrarily concentrate both a function and its Fourier
transform.
The trade-off between the compaction of a function and its Fourier transform can be formalized in the form of an
uncertainty principle by viewing a function and its Fourier transform as conjugate variables with respect to the
symplectic form on the time–frequency domain: from the point of view of the linear canonical transformation, the
Fourier transform is rotation by 90° in the time–frequency domain, and preserves the symplectic form.
Suppose ƒ(x) is an integrable and square-integrable function. Without loss of generality, assume that ƒ(x) is
normalized:

It follows from the Plancherel theorem that  is also normalized.
The spread around x = 0 may be measured by the dispersion about zero (Pinsky 2002) defined by
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In probability terms, this is the second moment of about zero.
The Uncertainty principle states that, if ƒ(x) is absolutely continuous and the functions x·ƒ(x) and ƒ′(x) are square
integrable, then

    (Pinsky 2002).

The equality is attained only in the case     (hence      )  where σ > 0
is arbitrary and C1 is such that ƒ is L2–normalized (Pinsky 2002). In other words, where ƒ is a (normalized) Gaussian
function with variance σ2, centered at zero, and its Fourier transform is a Gaussian function with variance 1/σ2.
In fact, this inequality implies that:

for any   in R  (Stein & Shakarchi 2003).
In quantum mechanics, the momentum and position wave functions are Fourier transform pairs, to within a factor of
Planck's constant. With this constant properly taken into account, the inequality above becomes the statement of the
Heisenberg uncertainty principle (Stein & Shakarchi 2003).
A stronger uncertainty principle is the Hirschman uncertainty principle which is expressed as:

where H(p) is the differential entropy of the probability density function p(x):

where the logarithms may be in any base which is consistent. The equality is attained for a Gaussian, as in the
previous case.

Spherical harmonics
Let the set of homogeneous harmonic polynomials of degree k on Rn be denoted by Ak. The set Ak consists of the
solid spherical harmonics of degree k. The solid spherical harmonics play a similar role in higher dimensions to the
Hermite polynomials in dimension one. Specifically, if f(x) = e−π|x|2P(x) for some P(x) in Ak, then

. Let the set Hk be the closure in L2(Rn) of linear combinations of functions of the form f(|x|)P(x)
where P(x) is in Ak. The space L2(Rn) is then a direct sum of the spaces Hk and the Fourier transform maps each
space Hk to itself and is possible to characterize the action of the Fourier transform on each space Hk (Stein & Weiss
1971). Let ƒ(x) = ƒ0(|x|)P(x) (with P(x) in Ak), then where

Here J(n + 2k − 2)/2 denotes the Bessel function of the first kind with order (n + 2k − 2)/2. When k = 0 this gives a
useful formula for the Fourier transform of a radial function (Grafakos 2004).

Restriction problems
In higher dimensions it becomes interesting to study restriction problems for the Fourier transform. The Fourier 
transform of an integrable function is continuous and the restriction of this function to any set is defined. But for a 
square-integrable function the Fourier transform could be a general class of square integrable functions. As such, the 
restriction of the Fourier transform of an L2(Rn) function cannot be defined on sets of measure 0. It is still an active 
area of study to understand restriction problems in Lp for 1 < p < 2. Surprisingly, it is possible in some cases to 
define the restriction of a Fourier transform to a set S, provided S has non-zero curvature. The case when S is the unit
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sphere in Rn is of particular interest. In this case the Tomas-Stein restriction theorem states that the restriction of the
Fourier transform to the unit sphere in Rn is a bounded operator on Lp provided 1 ≤ p ≤ (2n + 2) / (n + 3).
One notable difference between the Fourier transform in 1 dimension versus higher dimensions concerns the partial
sum operator. Consider an increasing collection of measurable sets ER indexed by R ∈ (0,∞): such as balls of radius
R centered at the origin, or cubes of side 2R. For a given integrable function ƒ, consider the function ƒR defined by:

Suppose in addition that ƒ is in Lp(Rn). For n = 1 and 1 < p < ∞, if one takes ER = (−R, R), then ƒR converges to ƒ in
Lp as R tends to infinity, by the boundedness of the Hilbert transform. Naively one may hope the same holds true for
n > 1. In the case that ER is taken to be a cube with side length R, then convergence still holds. Another natural
candidate is the Euclidean ball ER = {ξ : |ξ| < R}. In order for this partial sum operator to converge, it is necessary
that the multiplier for the unit ball be bounded in Lp(Rn). For n ≥ 2 it is a celebrated theorem of Charles Fefferman
that the multiplier for the unit ball is never bounded unless p = 2 (Duoandikoetxea 2001). In fact, when p ≠ 2, this
shows that not only may ƒR fail to converge to ƒ in Lp, but for some functions ƒ ∈ Lp(Rn), ƒR is not even an element of
Lp.

Fourier transform on other function spaces
The definition of the Fourier transform by the integral formula

is valid for Lebesgue integrable functions f; that is, f in L1(R). The image of L1 a subset of the space C0(R) of
continuous functions that tend to zero at infinity (the Riemann–Lebesgue lemma), although it is not the entire space.
Indeed, there is no simple characterization of the image.
It is possible to extend the definition of the Fourier transform to other spaces of functions. Since compactly
supported smooth functions are integrable and dense in L2(R), the Plancherel theorem allows us to extend the
definition of the Fourier transform to general functions in L2(R) by continuity arguments. Further : L2(R) →
L2(R) is a unitary operator (Stein & Weiss 1971, Thm. 2.3). In particular, the image of L2(R) is itself under the
Fourier transform. The Fourier transform in L2(R) is no longer given by an ordinary Lebesgue integral, although it
can be computed by an improper integral, here meaning that for an L2 function f,

where the limit is taken in the L2 sense. Many of the properties of the Fourier transform in L1 carry over to L2, by a
suitable limiting argument.
The definition of the Fourier transform can be extended to functions in Lp(R) for 1 ≤ p ≤ 2 by decomposing such
functions into a fat tail part in L2 plus a fat body part in L1. In each of these spaces, the Fourier transform of a
function in Lp(R) is in Lq(R), where is the Hölder conjugate of . by the Hausdorff–Young
inequality. However, except for p = 2, the image is not easily characterized. Further extensions become more
technical. The Fourier transform of functions in Lp for the range 2 < p < ∞ requires the study of distributions
(Katznelson 1976). In fact, it can be shown that there are functions in Lp with p>2 so that the Fourier transform is not
defined as a function (Stein & Weiss 1971).
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Tempered distributions
The Fourier transform maps the space of Schwartz functions to itself, and gives a homeomorphism of the space to
itself (Stein & Weiss 1971). Because of this it is possible to define the Fourier transform of tempered distributions.
These include all the integrable functions mentioned above, as well as well-behaved functions of polynomial growth
and distributions of compact support, and have the added advantage that the Fourier transform of any tempered
distribution is again a tempered distribution.
The following two facts provide some motivation for the definition of the Fourier transform of a distribution. First let
ƒ and g be integrable functions, and let and be their Fourier transforms respectively. Then the Fourier transform
obeys the following multiplication formula (Stein & Weiss 1971),

Secondly, every integrable function ƒ defines (induces) a distribution Tƒ by the relation

   for all Schwartz functions φ.

In fact, given a distribution T, we define the Fourier transform by the relation

   for all Schwartz functions φ.
It follows that

Distributions can be differentiated and the above mentioned compatibility of the Fourier transform with
differentiation and convolution remains true for tempered distributions.

Generalizations

Fourier–Stieltjes transform
The Fourier transform of a finite Borel measure μ on Rn is given by (Pinsky 2002):

This transform continues to enjoy many of the properties of the Fourier transform of integrable functions. One
notable difference is that the Riemann–Lebesgue lemma fails for measures (Katznelson 1976). In the case that
dμ = ƒ(x) dx, then the formula above reduces to the usual definition for the Fourier transform of ƒ. In the case that μ is
the probability distribution associated to a random variable X, the Fourier-Stieltjes transform is closely related to the
characteristic function, but the typical conventions in probability theory take eix·ξ instead of e−2πix·ξ (Pinsky 2002). In
the case when the distribution has a probability density function this definition reduces to the Fourier transform
applied to the probability density function, again with a different choice of constants.
The Fourier transform may be used to give a characterization of continuous measures. Bochner's theorem
characterizes which functions may arise as the Fourier–Stieltjes transform of a measure (Katznelson 1976).
Furthermore, the Dirac delta function is not a function but it is a finite Borel measure. Its Fourier transform is a
constant function (whose specific value depends upon the form of the Fourier transform used).
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Locally compact abelian groups
The Fourier transform may be generalized to any locally compact abelian group. A locally compact abelian group is
an abelian group which is at the same time a locally compact Hausdorff topological space so that the group
operations are continuous. If G is a locally compact abelian group, it has a translation invariant measure μ, called
Haar measure. For a locally compact abelian group G it is possible to place a topology on the set of characters so
that is also a locally compact abelian group. For a function ƒ in L1(G) it is possible to define the Fourier
transform by (Katznelson 1976):

Locally compact Hausdorff space
The Fourier transform may be generalized to any locally compact Hausdorff space, which recovers the topology but
loses the group structure.
Given a locally compact Hausdorff topological space X, the space A=C0(X) of continuous complex-valued functions
on X which vanish at infinity is in a natural way a commutative C*-algebra, via pointwise addition, multiplication,
complex conjugation, and with norm as the uniform norm. Conversely, the characters of this algebra A, denoted

are naturally a topological space, and can be identified with evaluation at a point of x, and one has an isometric
isomorphism In the case where X=R is the real line, this is exactly the Fourier transform.

Non-abelian groups
The Fourier transform can also be defined for functions on a non-abelian group, provided that the group is compact.
Unlike the Fourier transform on an abelian group, which is scalar-valued, the Fourier transform on a non-abelian
group is operator-valued (Hewitt & Ross 1971, Chapter 8). The Fourier transform on compact groups is a major tool
in representation theory (Knapp 2001) and non-commutative harmonic analysis.
Let G be a compact Hausdorff topological group. Let Σ denote the collection of all isomorphism classes of
finite-dimensional irreducible unitary representations, along with a definite choice of representation U(σ) on the
Hilbert space Hσ of finite dimension dσ for each σ ∈ Σ. If μ is a finite Borel measure on G, then the Fourier–Stieltjes
transform of μ is the operator on Hσ defined by

where is the complex-conjugate representation of U(σ) acting on Hσ. As in the abelian case, if μ is absolutely
continuous with respect to the left-invariant probability measure λ on G, then it is represented as

for some ƒ ∈ L1(λ). In this case, one identifies the Fourier transform of ƒ with the Fourier–Stieltjes transform of μ.

The mapping defines an isomorphism between the Banach space M(G) of finite Borel measures (see rca
space) and a closed subspace of the Banach space C∞(Σ) consisting of all sequences E = (Eσ) indexed by Σ of
(bounded) linear operators Eσ : Hσ → Hσ for which the norm

is finite. The "convolution theorem" asserts that, furthermore, this isomorphism of Banach spaces is in fact an
isomorphism of C* algebras into a subspace of C∞(Σ), in which M(G) is equipped with the product given by
convolution of measures and C∞(Σ) the product given by multiplication of operators in each index σ.
The Peter-Weyl theorem holds, and a version of the Fourier inversion formula (Plancherel's theorem) follows: if
ƒ ∈ L2(G), then
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where the summation is understood as convergent in the L2 sense.
The generalization of the Fourier transform to the noncommutative situation has also in part contributed to the
development of noncommutative geometry. In this context, a categorical generalization of the Fourier transform to
noncommutative groups is Tannaka-Krein duality, which replaces the group of characters with the category of
representations. However, this loses the connection with harmonic functions.

Alternatives
In signal processing terms, a function (of time) is a representation of a signal with perfect time resolution, but no
frequency information, while the Fourier transform has perfect frequency resolution, but no time information: the
magnitude of the Fourier transform at a point is how much frequency content there is, but location is only given by
phase (argument of the Fourier transform at a point), and standing waves are not localized in time – a sine wave
continues out to infinity, without decaying. This limits the usefulness of the Fourier transform for analyzing signals
that are localized in time, notably transients, or any signal of finite extent.
As alternatives to the Fourier transform, in time-frequency analysis, one uses time-frequency transforms or
time-frequency distributions to represent signals in a form that has some time information and some frequency
information – by the uncertainty principle, there is a trade-off between these. These can be generalizations of the
Fourier transform, such as the short-time Fourier transform or fractional Fourier transform, or can use different
functions to represent signals, as in wavelet transforms and chirplet transforms, with the wavelet analog of the
(continuous) Fourier transform being the continuous wavelet transform. (Boashash 2003).

Applications

Analysis of differential equations
Fourier transforms and the closely related Laplace transforms are widely used in solving differential equations. The
Fourier transform is compatible with differentiation in the following sense: if f(x) is a differentiable function with
Fourier transform , then the Fourier transform of its derivative is given by . This can be used to
transform differential equations into algebraic equations. Note that this technique only applies to problems whose
domain is the whole set of real numbers. By extending the Fourier transform to functions of several variables partial
differential equations with domain Rn can also be translated into algebraic equations.

Fourier transform spectroscopy
The Fourier transform is also used in nuclear magnetic resonance (NMR) and in other kinds of spectroscopy, e.g.
infrared (FTIR). In NMR an exponentially-shaped free induction decay (FID) signal is acquired in the time domain
and Fourier-transformed to a Lorentzian line-shape in the frequency domain. The Fourier transform is also used in
magnetic resonance imaging (MRI) and mass spectrometry.

Other notations
Other common notations for include:

Denoting the Fourier transform by a capital letter corresponding to the letter of function being transformed (such as 
f(x) and F(ξ)) is especially common in the sciences and engineering. In electronics, the omega (ω) is often used 
instead of ξ due to its interpretation as angular frequency, sometimes it is written as F(jω), where j is the imaginary
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unit, to indicate its relationship with the Laplace transform, and sometimes it is written informally as F(2πf) in order
to use ordinary frequency.

The interpretation of the complex function may be aided by expressing it in polar coordinate form

in terms of the two real functions A(ξ) and φ(ξ) where:

is the amplitude and

is the phase (see arg function).
Then the inverse transform can be written:

which is a recombination of all the frequency components of ƒ(x). Each component is a complex sinusoid of the
form e2πixξ  whose amplitude is A(ξ) and whose initial phase angle (at x = 0) is φ(ξ).
The Fourier transform may be thought of as a mapping on function spaces. This mapping is here denoted and

is used to denote the Fourier transform of the function f. This mapping is linear, which means that can
also be seen as a linear transformation on the function space and implies that the standard notation in linear algebra
of applying a linear transformation to a vector (here the function f) can be used to write instead of .
Since the result of applying the Fourier transform is again a function, we can be interested in the value of this
function evaluated at the value ξ for its variable, and this is denoted either as or as . Notice that
in the former case, it is implicitly understood that is applied first to f and then the resulting function is evaluated
at ξ, not the other way around.
In mathematics and various applied sciences it is often necessary to distinguish between a function f and the value of
f when its variable equals x, denoted f(x). This means that a notation like formally can be interpreted as
the Fourier transform of the values of f at x. Despite this flaw, the previous notation appears frequently, often when a
particular function or a function of a particular variable is to be transformed.
For example, is sometimes used to express that the Fourier transform of a rectangular
function is a sinc function,
or is used to express the shift property of the Fourier transform.
Notice, that the last example is only correct under the assumption that the transformed function is a function of x, not
of x0.

Other conventions
The Fourier transform can also be written in terms of angular frequency:   ω = 2πξ whose units are radians per
second.
The substitution ξ = ω/(2π) into the formulas above produces this convention:

Under this convention, the inverse transform becomes:

Unlike the convention followed in this article, when the Fourier transform is defined this way, it is no longer a 
unitary transformation on L2(Rn). There is also less symmetry between the formulas for the Fourier transform and its
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inverse.
Another convention is to split the factor of (2π)n evenly between the Fourier transform and its inverse, which leads
to definitions:

Under this convention, the Fourier transform is again a unitary transformation on L2(Rn). It also restores the
symmetry between the Fourier transform and its inverse.
Variations of all three conventions can be created by conjugating the complex-exponential kernel of both the forward
and the reverse transform. The signs must be opposites. Other than that, the choice is (again) a matter of convention.

Summary of popular forms of the Fourier transform

ordinary frequency ξ (hertz) unitary

angular frequency ω (rad/s) non-unitary

unitary

As discussed above, the characteristic function of a random variable is the same as the Fourier–Stieltjes transform of
its distribution measure, but in this context it is typical to take a different convention for the constants. Typically
characteristic function is defined .

As in the case of the "non-unitary angular frequency" convention above, there is no factor of 2π appearing in either
of the integral, or in the exponential. Unlike any of the conventions appearing above, this convention takes the
opposite sign in the exponential.

Tables of important Fourier transforms
The following tables record some closed form Fourier transforms. For functions ƒ(x) , g(x) and h(x) denote their
Fourier transforms by , , and respectively. Only the three most common conventions are included. It may
be useful to notice that entry 105 gives a relationship between the Fourier transform of a function and the original
function, which can be seen as relating the Fourier transform and its inverse.

Functional relationships
The Fourier transforms in this table may be found in (Erdélyi 1954) or the appendix of (Kammler 2000).
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Function Fourier transform
unitary, ordinary

frequency

Fourier transform
unitary, angular frequency

Fourier transform
non-unitary, angular

frequency

Remarks

Definition

101 Linearity

102 Shift in time domain

103 Shift in frequency domain, dual
of 102

104 Scaling in the time domain. If
is large, then is

concentrated around 0 and

spreads out and

flattens.

105 Duality. Here needs to be
calculated using the same
method as Fourier transform
column. Results from swapping
"dummy" variables of and 
or or .

106

107 This is the dual of 106

108 The notation denotes the
convolution of and  — this
rule is the convolution theorem

109 This is the dual of 108

110 For a purely real Hermitian symmetry. 
indicates the complex
conjugate.

111 For a purely real
even function

, and are purely real even functions.

112 For a purely real
odd function

, and are purely imaginary odd functions.

Square-integrable functions
The Fourier transforms in this table may be found in (Campbell & Foster 1948), (Erdélyi 1954), or the appendix of
(Kammler 2000).
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Function Fourier transform
unitary, ordinary

frequency

Fourier transform
unitary, angular frequency

Fourier transform
non-unitary, angular

frequency

Remarks

201 The rectangular pulse and the
normalized sinc function, here defined
as sinc(x) = sin(πx)/(πx)

202 Dual of rule 201. The rectangular
function is an ideal low-pass filter, and
the sinc function is the non-causal
impulse response of such a filter.

203 The function tri(x) is the triangular
function

204 Dual of rule 203.

205 The function u(x) is the Heaviside unit
step function and a>0.

206 This shows that, for the unitary Fourier
transforms, the Gaussian function
exp(−αx2) is its own Fourier transform
for some choice of α. For this to be
integrable we must have Re(α)>0.

207 For a>0. That is, the Fourier transform
of a decaying exponential function is a
Lorentzian function.

208 Hyperbolic secant is its own Fourier
transform

209 is the Hermite's polynomial. If
then the Gauss-Hermite

functions are eigenfunctions of the
Fourier transform operator. For a
derivation, see Hermite polynomial.
The formula reduces to 206 for 
.

Distributions
The Fourier transforms in this table may be found in (Erdélyi 1954) or the appendix of (Kammler 2000).
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Function Fourier transform
unitary, ordinary frequency

Fourier transform
unitary, angular frequency

Fourier transform
non-unitary, angular

frequency

Remarks

301 The distribution δ(ξ)
denotes the Dirac delta
function.

302 Dual of rule 301.

303 This follows from 103
and 301.

304 This follows from rules
101 and 303 using Euler's
formula: 

305 This follows from 101
and 303 using

306

307

308 Here, n is a natural
number and is
the n-th distribution
derivative of the Dirac
delta function. This rule
follows from rules 107
and 301. Combining this
rule with 101, we can
transform all
polynomials.

309 Here sgn(ξ) is the sign
function. Note that 1/x is
not a distribution. It is
necessary to use the
Cauchy principal value
when testing against
Schwartz functions. This
rule is useful in studying
the Hilbert transform.

310 1/xn is the homogeneous
distribution defined by
the distributional
derivative
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311 This formula is valid for
0 > α > −1. For α > 0
some singular terms arise
at the origin that can be
found by differentiating
318. If Re α > −1, then

is a locally
integrable function, and
so a tempered
distribution. The function

is a
holomorphic function
from the right half-plane
to the space of tempered
distributions. It admits a
unique meromorphic
extension to a tempered
distribution, also denoted

for α ≠ −2, −4, ...
(See homogeneous
distribution.)

312 The dual of rule 309. This
time the Fourier
transforms need to be
considered as Cauchy
principal value.

313 The function u(x) is the
Heaviside unit step
function; this follows
from rules 101, 301, and
312.

314 This function is known as
the Dirac comb function.
This result can be derived
from 302 and 102,
together with the fact that

as

distributions.

315 The function J0(x) is the
zeroth order Bessel
function of first kind.

316 This is a generalization of
315. The function Jn(x) is
the n-th order Bessel
function of first kind. The
function Tn(x) is the
Chebyshev polynomial of
the first kind.

317 is the
Euler–Mascheroni
constant.
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318 This formula is valid for
1 > α > 0. Use
differentiation to derive
formula for higher
exponents. is the
Heaviside function.

Two-dimensional functions

Function Fourier transform
unitary, ordinary frequency

Fourier transform
unitary, angular frequency

Fourier transform
non-unitary, angular frequency

400

401

402

Remarks
To 400: The variables ξx, ξy, ωx, ωy, νx and νy are real numbers. The integrals are taken over the entire plane.
To 401: Both functions are Gaussians, which may not have unit volume.
To 402: The function is defined by circ(r)=1 0≤r≤1, and is 0 otherwise. This is the Airy distribution, and is
expressed using J1 (the order 1 Bessel function of the first kind). (Stein & Weiss 1971, Thm. IV.3.3)

Formulas for general n-dimensional functions

Function Fourier transform
unitary, ordinary frequency

Fourier transform
unitary, angular frequency

Fourier transform
non-unitary, angular frequency

500

501

502

Remarks
To 501: The function χ[0,1] is the indicator function of the interval [0, 1]. The function Γ(x) is the gamma function.
The function Jn/2 + δ is a Bessel function of the first kind, with order n/2 + δ. Taking n = 2 and δ = 0 produces 402.
(Stein & Weiss 1971, Thm. 4.15)
To 502: See Riesz potential. The formula also holds for all α ≠ −n, −n − 1, ... by analytic continuation, but then the
function and its Fourier transforms need to be understood as suitably regularized tempered distributions. See
homogeneous distribution.
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External links
• The Discrete Fourier Transformation (DFT): Definition and numerical examples [3] - A Matlab tutorial
• Fourier Series Applet [4] (Tip: drag magnitude or phase dots up or down to change the wave form).
• Stephan Bernsee's FFTlab [5] (Java Applet)
• Stanford Video Course on the Fourier Transform [6]

• Weisstein, Eric W., "Fourier Transform [7]" from MathWorld.
• The DFT “à Pied”: Mastering The Fourier Transform in One Day [8] at The DSP Dimension
• An Interactive Flash Tutorial for the Fourier Transform [9]
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Harmonic oscillator

An undamped spring-mass
system is a simple harmonic

oscillator.

In classical mechanics, a harmonic oscillator is a system that, when displaced from
its equilibrium position, experiences a restoring force, F, proportional to the
displacement, x:

where k is a positive constant.
If F is the only force acting on the system, the system is called a simple harmonic
oscillator, and it undergoes simple harmonic motion: sinusoidal oscillations about
the equilibrium point, with a constant amplitude and a constant frequency (which
does not depend on the amplitude).

If a frictional force (damping) proportional to the velocity is also present, the
harmonic oscillator is described as a damped oscillator. Depending on the friction
coefficient, the system can:

• Oscillate with a frequency smaller than in the non-damped case, and an amplitude
decreasing with time (underdamped oscillator).

• Decay to the equilibrium position, without oscillations (overdamped oscillator).
The boundary solution between an underdamped oscillator and an overdamped
oscillator occurs at a particular value of the friction coefficient and is called
"critically damped".
If an external time dependent force is present, the harmonic oscillator is described as
a driven oscillator.

Mechanical examples include pendula (with small angles of displacement), masses
connected to springs, and acoustical systems. Other analogous systems include
electrical harmonic oscillators such as RLC circuits. The harmonic oscillator model
is very important in physics, because any mass subject to a force in stable
equilibrium acts as a harmonic oscillator for small vibrations. Harmonic oscillators occur widely in nature and are
exploited in many manmade devices, such as clocks and radio circuits. They are the source of virtually all sinusoidal
vibrations and waves.

Simple harmonic oscillator

Simple harmonic motion.

A simple harmonic oscillator is an oscillator that is neither driven nor
damped. It consists of a mass m,which experiences a single force, F,
which pulls the mass in the direction of the point x=0 and depends only
on the mass's position x and a constant k. Newton's second law for the
system is

Solving this differential equation, we find that the motion is described by the function

where
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The motion is periodic— repeating itself in a sinusoidal fashion with constant amplitude, A. In addition to its
amplitude, the motion of a simple harmonic oscillator is characterized by its period T, the time for a single oscillation
or its frequency f = 1⁄T, the number of cycles per unit time. The position at a given time t also depends on the phase,
φ, which determines the starting point on the sine wave. The period and frequency are determined by the size of the
mass m and the force constant k, while the amplitude and phase are determined by the starting position and velocity.
The velocity and acceleration of a simple harmonic oscillator oscillate with the same frequency as the position but
with shifted phases. The velocity is maximum for zero displacement, while the acceleration is in the opposite
direction as the displacement.
The potential energy stored in a simple harmonic oscillator at position x is

Damped harmonic oscillator

Dependence of the system behavior on the value of the
damping ratio ζ

A damped harmonic oscillator, which slows
down due to friction

In real oscillators, friction, or damping, slows the motion of the
system. In many vibrating systems the frictional force Ff can be
modeled as being proportional to the velocity v of the object: Ff =
−cv, where c is called the viscous damping coefficient.

Newton's second law for damped harmonic oscillators is then

This is rewritten into the form

where

is called the 'undamped angular frequency of

the oscillator' and

is called the 'damping ratio'.
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Step-response of a damped harmonic oscillator; curves
are plotted for three values of μ = ω1 = ω0√1−ζ2. Time

is in units of the decay time τ = 1/(ζω0).

The value of the damping ratio ζ critically determines the behavior
of the system. A damped harmonic oscillator can be:

• Overdamped (ζ > 1): The system returns (exponentially decays)
to equilibrium without oscillating. Larger values of the
damping ratio ζ return to equilibrium slower.

• Critically damped (ζ = 1): The system returns to equilibrium as
quickly as possible without oscillating. This is often desired for
the damping of systems such as doors.

• Underdamped (ζ < 1): The system oscillates (with a slightly
different frequency than the undamped case) with the amplitude
gradually decreasing to zero. The angular frequency of the
underdamped harmonic oscillator is given by

The Q factor of a damped oscillator is defined as

Q is related to the damping ratio by the equation 

Driven harmonic oscillators
Driven harmonic oscillators are damped oscillators further affected by an externally applied force F(t).
Newton's second law takes the form

It is usually rewritten into the form

This equation can be solved exactly for any driving force using the solutions z(t) to the unforced equation, which
satisfy

and which can be expressed as damped sinusoidal oscillations,

in the case where ζ ≤ 1. The amplitude A and phase φ determine the behavior needed to match the initial conditions.
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Step input
In the case ζ < 1 and a unit step input with x(0) = 0:

the solution is:

with phase φ given by

This behavior is found in (for example) feedback amplifiers, where the amplifier design is adjusted to obtain the
fastest step response possible without undue overshoot or undershoot and with an adequate settling time.
The time an oscillator needs to adapt to changed external conditions is of the order τ = 1/(ζω0). In physics, the
adaptation is called relaxation, and τ is called the relaxation time.
In electrical engineering, a multiple of τ is called the settling time, i.e. the time necessary to insure the signal is
within a fixed departure from final value, typically within 10%. The term overshoot refers to the extent the
maximum response exceeds final value, and undershoot refers to the extent the response falls below final value for
times following the maximum response.

Sinusoidal driving force

Steady state variation of amplitude with frequency and damping of a driven simple
harmonic oscillator.[1][2]

In the case of a sinusoidal driving force:

where is the driving amplitude and is
the driving frequency for a sinusoidal
driving mechanism. This type of system
appears in AC driven RLC circuits
(resistor-inductor-capacitor) and driven
spring systems having internal mechanical
resistance or external air resistance.

The general solution is a sum of a transient
solution that depends on initial conditions,
and a steady state that is independent of
initial conditions and depends only on the
driving amplitude , driving frequency,

, undamped angular frequency , and
the damping ratio .

The steady-state solution is proportional to the driving force with an induced phase change of :

where
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is the absolute value of the impedance or linear response function and

is the phase of the oscillation relative to the driving force.

For a particular driving frequency called the resonance, or resonant frequency , the amplitude

(for a given ) is maximum. This resonance effect only occurs when , i.e. for significantly
underdamped systems. For strongly underdamped systems the value of the amplitude can become quite large near
the resonance frequency.
The transient solutions are the same as the unforced ( ) damped harmonic oscillator and represent the
systems response to other events that occurred previously. The transient solutions typically die out rapidly enough
that they can be ignored.

Parametric oscillators
A parametric oscillator is a harmonic oscillator whose parameters oscillate in time. A familiar example of both
parametric and driven oscillation is playing on a swing.[3][4][5] Rocking back and forth pumps the swing as a driven
harmonic oscillator, but once moving, the swing can also be parametrically driven by alternately standing and
squatting at key points in the swing. The varying of the parameters drives the system. Examples of parameters that
may be varied are its resonance frequency and damping .
Parametric oscillators are used in many applications. The classical varactor parametric oscillator oscillates when the
diode's capacitance is varied periodically. The circuit that varies the diode's capacitance is called the "pump" or
"driver". In microwave electronics, waveguide/YAG based parametric oscillators operate in the same fashion. The
designer varies a parameter periodically to induce oscillations.
Parametric oscillators have been developed as low-noise amplifiers, especially in the radio and microwave frequency
range. Thermal noise is minimal, since a reactance (not a resistance) is varied. Another common use is frequency
conversion, e.g., conversion from audio to radio frequencies. For example, the Optical parametric oscillator converts
an input laser wave into two output waves of lower frequency ( ).
Parametric resonance occurs in a mechanical system when a system is parametrically excited and oscillates at one of
its resonant frequencies. Parametric excitation differs from forcing, since the action appears as a time varying
modification on a system parameter. This effect is different from regular resonance because it exhibits the instability
phenomenon.

Universal oscillator equation
The equation

is known as the universal oscillator equation since all second order linear oscillatory systems can be reduced to this
form. This is done through nondimensionalization.
If the forcing function is f(t) = cos(ωt) = cos(ωtcτ) = cos(ωτ), where ω = ωtc, the equation becomes

The solution to this differential equation contains two parts, the "transient" and the "steady state".
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Transient solution
The solution based on solving the ordinary differential equation is for arbitrary constants c1 and c2

The transient solution is independent of the forcing function.

Steady-state solution
Apply the "complex variables method" by solving the auxiliary equation below and then finding the real part of its
solution:

Supposing the solution is of the form

Its derivatives from zero to 2nd order are

Substituting these quantities into the differential equation gives

Dividing by the exponential term on the left results in

Equating the real and imaginary parts results in two independent equations

Amplitude part

Bode plot of the frequency response of an ideal
harmonic oscillator.

Squaring both equations and adding them together gives

Therefore,
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Compare this result with the theory section on resonance, as well as the "magnitude part" of the RLC circuit. This
amplitude function is particularly important in the analysis and understanding of the frequency response of
second-order systems.

Phase part

To solve for φ, divide both equations to get

This phase function is particularly important in the analysis and understanding of the frequency response of
second-order systems.

Full solution
Combining the amplitude and phase portions results in the steady-state solution

The solution of original universal oscillator equation is a superposition (sum) of the transient and steady-state
solutions

For a more complete description of how to solve the above equation, see linear ODEs with constant coefficients.

Equivalent systems
Harmonic oscillators occurring in a number of areas of engineering are equivalent in the sense that their
mathematical models are identical (see universal oscillator equation above). Below is a table showing analogous
quantities in four harmonic oscillator systems in mechanics and electronics. If analogous parameters on the same line
in the table are given numerically equal values, the behavior of the oscillators—their output waveform, resonant
frequency, damping factor, etc.—are the same.

Translational Mechanical Torsional Mechanical Series RLC Circuit Parallel RLC Circuit

Position Angle Charge Voltage 

Velocity Angular velocity Current 

Mass Moment of inertia Inductance Capacitance 

Spring constant Torsion constant Elastance Susceptance 

Friction Rotational friction Resistance Conductance 

Drive force Drive torque 

Undamped resonant frequency :

Differential equation:
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Application to a conservative force
The problem of the simple harmonic oscillator occurs frequently in physics, because a mass at equilibrium under the
influence of any conservative force, in the limit of small motions, behaves as a simple harmonic oscillator.
A conservative force is one that has a potential energy function. The potential energy function of a harmonic
oscillator is:

Given an arbitrary potential energy function , one can do a Taylor expansion in terms of around an energy
minimum ( ) to model the behavior of small perturbations from equilibrium.

Because is a minimum, the first derivative evaluated at must be zero, so the linear term drops out:

The constant term V(x0) is arbitrary and thus may be dropped, and a coordinate transformation allows the form of the
simple harmonic oscillator to be retrieved:

Thus, given an arbitrary potential energy function with a non-vanishing second derivative, one can use the
solution to the simple harmonic oscillator to provide an approximate solution for small perturbations around the
equilibrium point.

Examples

Simple pendulum
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A simple pendulum exhibits simple harmonic motion under the conditions of no
damping and small amplitude.

Assuming no damping and small
amplitudes, the differential equation
governing a simple pendulum is

The solution to this equation is given by:

where is the largest angle attained by the
pendulum. The period, the time for one
complete oscillation, is given by 
divided by whatever is multiplying the time
in the argument of the cosine ( here).

Pendulum swinging over turntable

Simple harmonic motion can in some cases
be considered to be the one-dimensional
projection of two-dimensional circular motion. Consider a long pendulum swinging over the turntable of a record
player. On the edge of the turntable there is an object. If the object is viewed from the same level as the turntable, a
projection of the motion of the object seems to be moving backwards and forwards on a straight line orthogonal to
the view direction, sinusoidally like the pendulum.
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Spring–mass system

Spring–mass system in equilibrium (A), compressed
(B) and stretched (C) states.

When a spring is stretched or compressed by a mass, the spring
develops a restoring force. Hooke's law gives the relationship of the
force exerted by the spring when the spring is compressed or
stretched a certain length:

where F is the force, k is the spring constant, and x is the
displacement of the mass with respect to the equilibrium position.
This relationship shows that the distance of the spring is always
opposite to the force of the spring.

By using either force balance or an energy method, it can be readily
shown that the motion of this system is given by the following
differential equation:

...the latter evidently being Newton's second law of motion.
If the initial displacement is A, and there is no initial velocity, the
solution of this equation is given by:

Given an ideal massless spring, is the mass on the end of the
spring. If the spring itself has mass, its effective mass must be
included in .

Energy variation in the spring–damping system

In terms of energy, all systems have two types of energy, potential energy and kinetic energy. When a spring is
stretched or compressed, it stores elastic potential energy, which then is transferred into kinetic energy. The potential
energy within a spring is determined by the equation 

When the spring is stretched or compressed, kinetic energy of the mass gets converted into potential energy of the
spring. By conservation of energy, assuming the datum is defined at the equilibrium position, when the spring
reaches its maximum potential energy, the kinetic energy of the mass is zero. When the spring is released, it tries to
return to equilibrium, and all its potential energy converts to kinetic energy of the mass.
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