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Week Date LectureTitle
1 1-Mar|Overview
2 5-Mar|Signas & Systems
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8 23-Apr|Filters & IIR Filters
26-Apr|FIR Filters
9 30-Apr|Multirate Filters
3-May|Filter Selection
10 7-May|Holiday
10-May |Quiz (10%)
1 14-May|z-Transform
17-May [Introduction to Digital Control
12 21-May|Stability of Digitd Systems
24-May | Estimation
13 28-May|Kaman Filters & GPS
31-May|Applicationsin Industry




Overview

e Laplace transform
—  Finite power signals
1. Unilateral Laplace transform
2. Bilateral Laplace transform

e Transform Analysis of Linear systems
—  Circuit Analysis
—  Transfer functions

Laplace Transform

e Problem: FT of a signal may not always exist!
— finite power (and not periodic),
— eg., X = udexp(-ad) with a< 0
— Or X(H = u[Hcos(51)!

e Solution: Force signal to have finite energy
— Multiply by convergence factor (exp(-gd)
— ie, new signal x (4 = exp(-od x4
— Therefore, FT of x (4 exists

X, (W) = [ X, (O exp(- iwt)ct Fourier
N I
X, (W) = [ x(t)exp(~(o + jwt)ct Laplace

Rearranging...




Bilateral Laplace Transform

e For compactness we write

- s=0#HWw
Note:
X(s) = jx(t) exp(—st)dt Laplace transform
b X(s) = L{x(¢)}
a'+joo
X(t) :i_ IX(S) exp(st)ds |Inverse Laplalce transform
21,7, X(t) = L{X(s)}
x(1) =exp(or) x,(1) i.e., X by inverse of converge factor
Lo
=exp(oi) oy j X, () exp(jor) dw i.e., F{X(w)}
=3 T X, (@) exp((c + jo)r) deo Finally re-arrange
b 5

Unilateral Laplace Transform

e Problem with two-sided (bilateral) transform

. T
— choice of gcan cause ambiguities in £ {X(s)}
e e, as different x(4)'s have same X(s)!
« eg, expat)u(®)} = L{-explatu(-t)}

e Solution: assume x(9 to be causal (one-sidead)
— e, X =0when t<0
— This is termed the wnilatera/ Laplace Transform
— Integration is now from 0 <t <o

e This solution works for most practical signals

— Bilateral required for (non-deterministic) random signals
e (see later)




Unilateral Laplace Transform

e One-sided Laplace transform

X(s) = ]:x(t) exp(—st)dt

0 indicates origin is included in integration 0 < £ < «

e Laplace transform
— Xs) = L{x(t)}
* Inverse Laplace transform

— X(t) = LX)

e Consider signal

Convergence of Laplace Transform

X(t) = exp(—at)u(t)

X(s) = [exp(=(s+a)t)dt
0
2 _ Effectively same as
= { exp(=(g+ap)exp(=wdt ¢ Foyrier Transform
-1 .
= ——|expl—I|s+a e Convergence dependent on both o
o lowl-(srak) - conw
1 +a>0 — Note:O{s} =0
= gta Region of Convergence (ROC)
(J + ?-') + W — Finite integral (energy)

X(s) = ——, Ofs>-a

s+a’




Laplace Examples

Unit step function: Lult} = Tu(t)exp(—st)dt

1
—
©
&
0
o
o
—

Impulse function: Lot =  [olt)exp(-st)at
= [b)expl-st)e

Remember: 0 .

jf(t)a(tn=]f(t)a(tn=f(o)]a(t)dt=f(o) = expl(-s0)[ ot =1

Interpretation of Laplace Transform

» Represents signals, X(8, as sum of
— growing/decaying cosine waves
« atall frequencies (continuous), X(s/
— exp(ot )| X{s)dw/2Ttis amplitude of growing/decaying cosine wave
e Infrequency band wto w+ dw
— [OX(s)is phase shift of cosine wave
e parameter ¢ ({s}) determines rate of growth or decay

— Note: 0 =0 is the Fourier Transform ©
» Constant amplitude cosine waves




Complex Phasors

. imag
1ma;
[0} 5 A

envelope

constant magnitude o = 0
As per Fourier Transform

Aexp(sr) = Aexp(ot) cos(wt) + j Aexp(ot) sin(wr)

Aexp(Gt)
/\ Decayingo < 0

(a)
. . envelope
imag imag
® / Aexp( ot)
- - 2 A j\ . Growingo >0
/ real
(b) 11

Linear Transforms

¢ So far, we have looked at
— Fourier series
 Trigonometrical & Complex
— Fourier transform
— Laplace transform
e All represent signals as a
— Weighted sum (or integration) of
— Complex exponentials (that are orthogonal,
— eg., complex FS, X(§ = Z X exp(/nw,)
e This relates directly to linear systems

Complex Fourier series:

W= ¥ X, exp( naot)

n=-00
Fourier transform:

x(f) = % j X(w) exp( jeot ) deo

—co

Laplace transform:
1 Ftjoa
*(H) = 5 a_L X(s) exp(st) ds




Linear Transforms & Linear Systems

Useful, due to two properties of linear systems
1. Superposition principle
- Inputs are complex exponentials (sinusoids)

- Output is same exponentials, but with different weights, i.e., delay and
amplify/attenuate input

H{axl(t)+bx2(t)} :aH{xl(t)} +bH{x2(t)}

In other words, each phasor can be considered individually
and output calculated by summation of the individual phasors

13

Linear Transforms & Linear Systems

2. Ordinary differential equations (ODE)
—  Output )4 related to input x(4 by ODE

dy d'y dx d™x
+a—2+...+ =b.X+b —+---+Db
YT dt % dt" X+ dt " odt™
d _ . _ Differentiation is simple:
E(exp(Jncq)t)) = jnay, exp(jnagt) e Frequency unchanged
q9? e Magnitude changes
oz (ExP(inat) = (ine)* exp(jnaat) M1

Note: initially consider harmonically related sinusoids nw, as per Fourier Series

14




Example RC Circuit

i R
L

@ X(¢t) (input) C—— y®) (output)

Using Kirchhoff’s laws, system described (modelled) by ODE

(1 energy store O 1st order) x(t) sinusoidal input
9, y(t) + 3 E = bo eXp( J n%t) Specifically:
dy . o - R
Y(t) + RC E = eXp( J n%t) goeri_valtion shortly...

@@ Example RC Circuit Note: Da(t)
o odx

(iney)y, (t)

* Ifinput single sinusoid x,(t) = exp(/nw,1
— and system linear, (steady-state) output has form:

Y (t) =K exp( J na,bt) — gc'_:lf?e frc:quency
* Substityting (assumed) solufion into ODE ) &' erel: amp.
where K'is complex constant (weight) ~ 8/or phase

2oy, (1) +a (jney) y, () = by exp( jnegt)
b,

L) =——————exp(jnat

) 8+ (Inap)a, PneaH Where H,, is the

y,(t) = H,exp(jnat) system transfer
b, 1 function to this

single phasor (K)

n

_a +(jnw)a, 1+ (jnw)RC




Response of Linear System

* Input represented as Fourier series

(7,

. Xy
exp(iw,f)
@,
X5
exp(j2w,t)
X(t)
@ 2 Linear System

X

exp(jnw)l) ”
D

Response of Linear System

e Applying superposition principle
— Applying individual phasors & shifting X, terms

jeuead H,exp(jw,!)
@_* Linear System

2
U Hyexp(i2w,
@—' Linear System

exp(jn E
[PUmeh Hyexp(inwd)
@—' Linear System

S )10




Response of Linear System

e Qutput represented as Fourier series
— output FS coefficients ¥, = #, X,

\ Input |.| & O at this frequency

System |.| & O at this frequency

. H.
Xp(JZ W, Ob é 2)(2 Output |.| & O at this frequency
. 5 0

b= H. X el
xp(jnw,0) %@Hﬂx y(t) Zw X, exp( jnwt)

General Approach

Represent input as weighted sum of
— Complex exponential basis functions,
— eg., FS: exp(/naw,d: sinusoids at harmonic frequencies
Basis functions are orthogonal
— Amplitude (& phase) at each freq. evaluated separately
System described by ODE
— Response to exponentials (differentials) easy to calculate
e Frequency remains constant, Amp. & Phase change
— eg, if response 2" harmonic is 2c,exp(2/w),)
System is linear

— Output is sum of responses of individual exponentials
e i.e., sum response at each frequency
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Laplace Transforms

e General approach was illustrated with
— Periodic input (i.e., we used Fourier series)
— Steady state response

e But, in general interested in
— non-periodic input and
— Both transient & steady state response

e So, we use the Laplace transform
— Basis functions exp(s8), where s = g+w
— output response is H(s) exp(sd

— where H(s) is system transfer function .
Note: still

orthogonal

21

Laplace System Analysis

Steps in Laplace system Analysis,

1. Laplace transform input signal
- X&) =LY}

2. Calculate system transfer function
- HE)

3. Calculate (Laplace) output using multiplication
- Y6 =HEXE)

4. Inverse Laplace transform

- Y =L7{E)

22




Laplace Transfer Function

e Hs) completely defines the system
e Defined as:

LLy®} _ (S

= X6

Apply Kirchoff’s current law at node A:

ORIy
i R R dt
1A Rearangingin termsof x(t)
— t d t
D X8 CT KB %):cd_iﬁ%
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Laplace Transfer Functiqg.. L{gtf(t)}zsp(s)_f(@)

Taking Laplace Transforms
X = cfsvi9-yo}+ 2

Assumezeroinitial conditions y(0) =0

X(9) _ {CS +E}Y(S)

R
. . Example 1.9
Transfer function (first order LPF): MGT

H (s) = Y(s)_ 1
X(s) (1+RCs) Note: similarity to H,, for FS

24




Laplace Circuit Analysis

e Transform circuit elements
— then apply Kirchoff's current law

 Impedance of Capacitor = 1/Cs
— (Note: impedance of inductor = Ls)

—— L A X =Y(S) _Y(S) _ gy ()
R 1/Cs
D xs) 1/Cs =1 Vs 1
H(S)=—
(1+RCs)

25

ircui is v Lt r(elar] FO
Nag? Laplace Circuit Analysis yote: L{!f({)d{}_T
* Impedance of Inductor = Ls

t)-yt)_1
By Kirchoff's current law: (LRV() = IJ. Y(t)dt)

X(8)-Y(s) _ 1
R R sL
H(s) = 1 Ls

(1.,.5) ) (Ls+R)
Ls

Y(s)

D xs) Ls 2 ys)
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Summary

e Laplace transform similar to Fourier
— Applicable to broad range of signals
— Most one-sided (causal) finite energy and power
e Particularly useful for
— solving ODE's i.e., analysing linear, time-invariant systems (e.g., circuit
analysis)
* Based on summation (integration) of
— (orthogonal) exponential (basis) functions
* like Fourier series and transform
— System response scaled versions of these
« amplitude and phase change (only) at each frequency
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