

LTI & Laplace Transforms

ELEC 3004: Signals, Systems & Control
Dr. Surya Singh, Prof. Brian Lovell & Dr. Paul Pounds
Lecture # 4 March 12, 2012

elec3004@itee.uq.edu.au

http://courses.itee.uq.edu.au/elec3004/2012s1/

2012 School of Information Technology and Electrical Engineering at the University of Queensland

Schedule of Events

Week	Date	Lecture Title
1	1-Mar	Overview
2	5-Mar	Signals & Systems
	8-Mar	Sampling
3	12-Mar	LTI & Laplace Transforms
	15-Mar	Convolution
4	19-Mar	Discrete Fourier Series
	22-Mar	Fourier Transform
5	26-Mar	Fourier Transform Operations
	29-Mar	Applications: DFFT and DCT
6	2-Apr	Exam 1 (10%)
	5-Apr	(Guest Lecture from Industry)
7	16-Apr	Data Acquisition & Interpolation
	19-Apr	Noise
8	23-Apr	Filters & IIR Filters
	26-Apr	FIR Filters
9	30-Apr	Multirate Filters
	3-May	Filter Selection
10	7-May	Holiday
	10-May	Quiz (10%)
11	14-May	z-Transform
	17-May	Introduction to Digital Control
12	21-May	Stability of Digital Systems
	24-May	Estimation
13	28-May	Kalman Filters & GPS
	31-May	Applications in Industry

Overview

- Laplace transform
 - Finite power signals
 - 1. Unilateral Laplace transform
 - 2. Bilateral Laplace transform
- Transform Analysis of Linear systems
 - Circuit Analysis
 - Transfer functions

2

Laplace Transform

- Problem: FT of a signal may not always exist!
 - finite power (and not periodic),
 - e.g., $x(t) = u(t)\exp(-at)$ with a < 0
 - Or $x(t) = u(t)\cos(5t)!$
- Solution: Force signal to have finite energy
 - Multiply by convergence factor (exp(- σt))
 - i.e., new signal $x_o(t) = \exp(-\sigma t)x(t)$
 - Therefore, FT of $x_o(t)$ exists

$$X_{\sigma}(w) = \int_{-\infty}^{\infty} x_{\sigma}(t) \exp(-jwt) dt \qquad \qquad \text{Fourier}$$
 Rearranging...
$$X_{\sigma}(w) = \int_{-\infty}^{\infty} x(t) \exp(-(\sigma + jw)t) dt \qquad \qquad \text{Laplace}$$

Bilateral Laplace Transform

- For compactness we write
 - $s = \sigma + jw$

Note:

$$X(s) = \int_{-\infty}^{\infty} x(t) \exp(-st) dt$$

Laplace transform
$$X(s) = L\{x(t)\}$$

$$x(t) = \frac{1}{2\pi j} \int_{\sigma - j\infty}^{\sigma + j\infty} X(s) \exp(st) ds$$

$$x(t) = \frac{1}{2\pi j} \int_{\sigma - j\infty}^{\sigma + j\infty} X(s) \exp(st) ds$$
Inverse Laplace transform
$$x(t) = L^{-1}\{X(s)\}$$

Inverse Laplace transform
$$x(t) = L^{-1}\{X(s)\}$$

$$\begin{split} x(t) &= \exp(\sigma t) \; x_\sigma(t) & \text{i.e., } \times \text{ by inverse of converge factor} \\ &= \exp(\sigma t) \; \frac{1}{2\pi} \int\limits_{-\infty}^{\infty} X_\sigma(\omega) \; \exp(j\omega t) \; d\omega & \text{i.e., } \mathsf{F}^\text{-1}\{\mathsf{X}_\sigma(\omega)\} \\ &= \frac{1}{2\pi} \int\limits_{-\infty}^{\infty} X_\sigma(\omega) \; \exp((\sigma + j\omega)t) \; d\omega & \text{Finally re-arrange} \end{split}$$

Unilateral Laplace Transform

- Problem with two-sided (bilateral) transform
 - choice of σ can cause ambiguities in $L^{-1}\{X(s)\}$
 - i.e., as different x(t)'s have same X(s)!
 - e.g., $L\{\exp(at)u(t)\} = L\{-\exp(at)u(-t)\}$
- Solution: assume x(t) to be causal (one-sided)
 - i.e., x(t) = 0 when t < 0
 - This is termed the unilateral Laplace Transform
 - Integration is now from $0 \le t < \infty$
- This solution works for *most* practical signals
 - Bilateral required for (non-deterministic) random signals
 - (see later)

Unilateral Laplace Transform

• One-sided Laplace transform

$$X(s) = \int_{0^{-}}^{\infty} x(t) \exp(-st) dt$$

 0^{-} indicates origin is included in integration $0 \le t < ∞$

- Laplace transform
 - $X(s) = L\{x(t)\}$
- Inverse Laplace transform

$$- x(t) = L^{-1}\{X(s)\}\$$

Consider signal

Convergence of Laplace Transform

$$x(t) = \exp(-at)u(t)$$

$$x(s) = \int_{0}^{\infty} \exp(-(s+a)t)dt$$

$$= \int_{0}^{\infty} \exp(-(\sigma+a)t) \exp(-jwt)dt$$

$$= \frac{-1}{s+a} [\exp(-(s+a)t)]_{0}^{\infty} \qquad \text{Convergence dependent on both } \sigma$$

$$= \frac{1}{(\sigma+a)+jw}, \quad \sigma+a>0 \qquad \text{Region of Convergence (ROC)}$$

$$x(s) = \frac{1}{s+a}, \quad \Re\{s\} > -a$$

Laplace Examples

Unit step function:
$$L\{u(t)\} = \int_{0}^{\infty} u(t) \exp(-st) dt$$
$$= \int_{0}^{\infty} \exp(-st) dt$$
$$= \left[-\frac{\exp(-st)}{s} \right]_{0}^{\infty} = \frac{1}{s}, \quad \sigma > 0$$

Impulse function:
$$L\{\delta(t)\} = \int_{0}^{\infty} \delta(t) \exp(-st) dt$$

$$= \int_{0}^{\infty} \delta(t) \exp(-st) dt$$
Remember:

$$\int_{-\infty}^{\infty} f(t)\delta(t)dt = \int_{0^{+}}^{0^{+}} f(t)\delta(t)dt = f(0)\int_{0^{+}}^{0^{+}} \delta(t)dt = f(0) = \exp(-s0)\int_{0^{-}}^{0^{+}} \delta(t)dt = 1$$

Interpretation of Laplace Transform

- Represents signals, x(t), as sum of
 - growing/decaying cosine waves
- at all frequencies (continuous), X(s)
 - $\exp(\sigma t)|X(s)|dw/2\pi$ is amplitude of growing/decaying cosine wave
 - In frequency band w to w + dw
 - $\angle X(s)$ is phase shift of cosine wave
- parameter $\sigma(\Re\{s\})$ determines rate of growth or decay
 - Note: $\sigma = 0$ is the Fourier Transform \odot
 - Constant amplitude cosine waves

Complex Phasors

constant magnitude $\sigma = 0$ As per Fourier Transform

 $A \exp(st) = A \exp(\sigma t) \cos(\omega t) + j A \exp(\sigma t) \sin(\omega t)$

Decaying $\sigma < 0$

Growing $\sigma > 0$

Linear Transforms

- So far, we have looked at
 - Fourier series
 - Trigonometrical & Complex
 - Fourier transform
 - Laplace transform
- All represent signals as a
 - Weighted sum (or integration) of
 - Complex exponentials (that are orthogonal)
 - e.g., complex FS, $x(t) = \sum X_n \exp(jnw_0 t)$
- This relates directly to linear systems

Complex Fourier series:

$$x(t) = \sum_{n = -\infty}^{+\infty} X_n \exp(jn\omega_0 t)$$

Fourier transform:

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) \exp(j\omega t) d\omega$$

Laplace transform:

$$x(t) = \frac{1}{2\pi j} \int_{\sigma - j\infty}^{\sigma + j\infty} X(s) \exp(st) \ ds$$

Linear Transforms & Linear Systems

Useful, due to two properties of linear systems

- Superposition principle
 - Inputs are complex exponentials (sinusoids)
 - Output is same exponentials, but with different weights, i.e., delay and amplify/attenuate input

$$H\{ax_1(t)+bx_2(t)\}=aH\{x_1(t)\}+bH\{x_2(t)\}$$

In other words, each phasor can be considered individually and output calculated by summation of the individual phasors

Linear Transforms & Linear Systems

- 2. Ordinary differential equations (ODE)
 - Output y(t) related to input x(t) by ODE

$$a_0 y + a_1 \frac{dy}{dt} + \dots + a_n \frac{d^n y}{dt^n} = b_0 x + b_1 \frac{dx}{dt} + \dots + b_m \frac{d^m x}{dt^m}$$

$$\frac{d}{dt}(\exp(jn\omega_0 t)) = jn\omega_0 \exp(jn\omega_0 t)$$
Differentiation is simple:
• Frequency unchanged
• Magnitude changes
$$\frac{d^2}{dt^2}(\exp(jn\omega_0 t)) = (jn\omega_0)^2 \exp(jn\omega_0 t)$$
(complex)

$$\frac{d^2}{dt^2}(\exp(jn\omega_0 t)) = (jn\omega_0)^2 \exp(jn\omega_0 t) \text{(complex)}$$

Note: initially consider harmonically related sinusoids $n\boldsymbol{\omega}_0$ as per Fourier Series

Example RC Circuit

Using Kirchhoff's laws, system described (modelled) by ODE

(1 energy store : 1st order)
$$a_0 y(t) + a_1 \frac{dy}{dt} = b_0 \exp(t)$$

 $a_0 y(t) + a_1 \frac{dy}{dt} = b_0 \exp(jn\omega_0 t)$

$$y(t) + RC \frac{dy}{dt} = \exp(jn\omega_0 t)$$

x(t) sinusoidal input

Specifically: $a_0 = 1$ $a_1 = RC$ $b_0 = 1$

derivation shortly...

Example RC Circuit

Note:
$$\frac{dy_n(t)}{dx} = (jn\omega_0)y_n(t)$$

- If input single sinusoid $x_n(t) = \exp(jnw_0t)$
 - and system linear, (steady-state) output has form:

$$y_n(t) = K \exp(jn\omega_0 t) \iff S_D$$
• Substituting (assumed) solution into ODE where K is complex constant (weight)

Same frequency Different amp. &/or phase

$$a_0 y_n(t) + a_1 (jn\omega_0) y_n(t) = b_0 \exp(jn\omega_0 t)$$

$$y_n(t) = \frac{b_0}{a_0 + (jn\omega_0)a_1} \exp(jn\omega_0 t)$$

$$y_n(t) = H_n \exp(jn\omega_0 t)$$

$$H_n = \frac{b_0}{a_0 + (jn\omega_0)a_1} = \frac{1}{1 + (jn\omega_0)RC}$$

Where H_n is the system transfer function to this single phasor (K)₁₆

General Approach

- Represent input as weighted sum of
 - Complex exponential basis functions,
 - e.g., FS: $\exp(jn\omega_0 t)$: sinusoids at harmonic frequencies
- Basis functions are orthogonal
 - Amplitude (& phase) at each freq. evaluated separately
- System described by ODE
 - Response to exponentials (differentials) easy to calculate
 - Frequency remains constant, Amp. & Phase change
 - e.g., if response 2^{nd} harmonic is $2\omega_0 \exp(2j\omega_0)$
- System is linear
 - Output is sum of responses of individual exponentials
 - i.e., sum response at each frequency

Laplace Transforms

- General approach was illustrated with
 - Periodic input (i.e., we used Fourier series)
 - Steady state response
- But, in general interested in
 - non-periodic input and
 - Both transient & steady state response
- So, we use the Laplace transform
 - Basis functions $\exp(st)$, where $s = \sigma + jw$
 - output response is H(s) exp(st)
 - where H(s) is system transfer function

Note: still orthogonal

21

Laplace System Analysis

Steps in Laplace system Analysis,

- 1. Laplace transform input signal
 - $X(s) = L\{x(t)\}$
- 2. Calculate system transfer function
 - *H(s)*
- 3. Calculate (Laplace) output using multiplication
 - Y(s) = H(s)X(s)
- 4. Inverse Laplace transform
 - $y(t) = L^{-1} \{Y(s)\}$

Key: Calculating system transfer function: H(s)

Laplace Transfer Function

- H(s) completely defines the system
- Defined as:

$$H(s) = \frac{L\{y(t)\}}{L\{x(t)\}} = \frac{Y(s)}{X(s)}$$

Apply Kirchoff's current law at node A:

$$\frac{x(t) - y(t)}{R} = C \frac{dy}{dt}$$

$$\frac{x(t)}{R} = C\frac{dy}{dt} + \frac{y(t)}{R}$$

Laplace Transfer Function: $L\left\{\frac{d}{dt}f(t)\right\} = sF(s) - f(0^+)$

Taking Laplace Transforms

$$\frac{X(s)}{R} = C\{sY(s) - y(0)\} + \frac{Y(s)}{R}$$

Assume zero initial conditions y(0) = 0

$$\frac{X(s)}{R} = \left\{ Cs + \frac{1}{R} \right\} Y(s)$$

Transfer function (first order LPF):

Example 1.9 MGT

$$H(s) = \frac{Y(s)}{X(s)} = \frac{1}{(1 + RCs)}$$

Note: similarity to H_n for FS

Laplace Circuit Analysis

- Transform circuit elements
 - then apply Kirchoff's current law
 - Impedance of Capacitor = 1/Cs
 - (Note: impedance of inductor = Ls)

1/Cs
$$\frac{X(s)-Y(s)}{R} = \frac{Y(s)}{1/Cs} = CsY(s)$$

$$H(s) = \frac{1}{(1+RCs)}$$

This is quick and easy way of doing circuit analysis

Laplace Circuit Analysis Note: $L\left\{\int_{0}^{t} f(\xi)d\xi\right\} = \frac{F(s)}{s}$

Note:
$$L\left\{\int_{0}^{t} f(\xi)d\xi\right\} = \frac{F(s)}{s}$$

• Impedance of Inductor = Ls

By Kirchoff's current law: $\left(\frac{x(t) - y(t)}{R} = \frac{1}{L} \int y(t) dt\right)$

$$\frac{X(s) - Y(s)}{R} = \frac{1}{sL}Y(s)$$

A
$$H(s) = \frac{1}{(1 + \frac{R}{Ls})} = \frac{Ls}{(Ls + R)}$$

First order HPF

- Laplace transform similar to Fourier
 - Applicable to broad range of signals
 - Most one-sided (causal) finite energy and power
- Particularly useful for
 - solving ODE's i.e., analysing linear, time-invariant systems (e.g., circuit analysis)
- Based on summation (integration) of
 - (orthogonal) exponential (basis) functions
 - like Fourier series and transform
 - System response scaled versions of these
 - amplitude and phase change (only) at each frequency