Sampling

ELEC 3004: Signals, Systems & Control
Dr. Surya Singh, Prof. Brian Lovell & Dr. Paul Pounds
Lecture # 3 March 8, 2012

elec3004@itee.uq.edu.au
http://courses.itee.uq.edu.au/elec3004/2012s1/

© 2012 School of Information Technology and Electrical Engineering at the University of Queensland

Schedule of Events

<table>
<thead>
<tr>
<th>1</th>
<th>1-Mar</th>
<th>Overview</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>8-Mar</td>
<td>Sampling</td>
</tr>
<tr>
<td>3</td>
<td>5-Mar</td>
<td>Signals & Systems</td>
</tr>
<tr>
<td>4</td>
<td>12-Mar</td>
<td>LTI & Laplace Transforms</td>
</tr>
<tr>
<td>5</td>
<td>15-Mar</td>
<td>Convolution</td>
</tr>
<tr>
<td>6</td>
<td>19-Mar</td>
<td>Discrete Fourier Series</td>
</tr>
<tr>
<td>7</td>
<td>22-Mar</td>
<td>Fourier Transform</td>
</tr>
<tr>
<td>8</td>
<td>26-Mar</td>
<td>Fourier Transform Operations</td>
</tr>
<tr>
<td>9</td>
<td>29-Mar</td>
<td>Applications: DFFT and DCT</td>
</tr>
<tr>
<td>10</td>
<td>2-Apr</td>
<td>Exam 1 (10%)</td>
</tr>
<tr>
<td>11</td>
<td>5-Apr</td>
<td>Guest Lecture from Industry</td>
</tr>
<tr>
<td>12</td>
<td>16-Apr</td>
<td>Data Acquisition & Interpolation</td>
</tr>
<tr>
<td>13</td>
<td>19-Apr</td>
<td>Noise</td>
</tr>
<tr>
<td>14</td>
<td>23-Apr</td>
<td>Filters & IIR Filters</td>
</tr>
<tr>
<td>15</td>
<td>26-Apr</td>
<td>FIR Filters</td>
</tr>
<tr>
<td>16</td>
<td>30-Apr</td>
<td>Multirate Filters</td>
</tr>
<tr>
<td>17</td>
<td>3-May</td>
<td>Filter Selection</td>
</tr>
<tr>
<td>18</td>
<td>7-May</td>
<td>Holiday</td>
</tr>
<tr>
<td>19</td>
<td>10-May</td>
<td>Quiz (10%)</td>
</tr>
<tr>
<td>20</td>
<td>14-May</td>
<td>Introduction to Digital Control</td>
</tr>
<tr>
<td>21</td>
<td>17-May</td>
<td>Stability of Digital Systems</td>
</tr>
<tr>
<td>22</td>
<td>21-May</td>
<td>Estimation</td>
</tr>
<tr>
<td>23</td>
<td>24-May</td>
<td>Kalman Filters & GPS</td>
</tr>
<tr>
<td>24</td>
<td>28-May</td>
<td>Applications in Industry</td>
</tr>
</tbody>
</table>
Announcements

• Practicals next week!
Therefore, No Tutorials next week

• Practical 1: Pre-lab will be posted this evening!

• No Pre-Lab == No Lab Admission

• Please go to the lab you have been assigned to!

Introduction

• Most naturally occurring signals are continuous-valued
 — continuous-time (CT) and continuous-value (CV)

• Analogue system, e.g., analogue filter
 — problems: component tolerances, variation with temperature and age
 — limited to time invariant systems (non-adaptive)

• Digital System (DSP: software, VLSI, or FPGA)
 — can replace analogue systems, more robust
 — can also implement adaptive and non-linear fctns
 • still some issues: quantisation, aliasing (later)
Analogue & Digital Systems

Analogue System

\[x(t) \rightarrow \text{Analogue Filter} \rightarrow y(t) \]

Digital System

\[x(t) \rightarrow \text{sampling} \rightarrow \text{quantisation} \rightarrow x[n] \rightarrow \text{DSP} \rightarrow y[n] \rightarrow \text{reconstruction} \rightarrow y(t) \]

Key: CT = continuous-time, CV = continuous-valued, DT = discrete-time, DV = discrete valued

Mathematics of Sampling and Reconstruction

\[x(t) \rightarrow x_c(t) \rightarrow \text{DSP} \rightarrow \text{reconstruction} \rightarrow y(t) \]

Impulse train

\[\delta_T(t) = \sum \delta(t - n\Delta t) \]

Impulse train

\[\delta_T(t) = \sum \delta(t - n\Delta t) \]

Sampling frequency

\[f_s = 1/\Delta t \]

Gain

\[\text{Gain} \]

Cut-off frequency

\[f_c \]

Freq

5

6
Mathematical Model of Sampling

- $x(t)$ multiplied by impulse train $\delta_f(t)$

\[
X_c(t) = x(t)\delta_f(t) = x(t)[\delta(t) + \delta(t-\Delta t) + \delta(t-2\Delta t) + \cdots] = \sum_{n} x(n\Delta t)\delta(t-n\Delta t)
\]

- $x_c(t)$ is a train of impulses of height $x(t)|_{t=n\Delta t}$
Frequency Domain Analysis of Sampling

- Consider the case where the DSP performs no filtering operations
 - i.e., only passes $x_c(t)$ to the reconstruction filter
- To understand we need to look at the frequency domain
- Sampling: we know
 - multiplication in time = convolution in frequency
 - $F\{x(t)\} = X(w)$
 - $F\{\delta_T(t)\} = \sum \delta(w - 2\pi n/\Delta t)$
 - i.e., an impulse train in the frequency domain

In the frequency domain we have

$$X_c(w) = \frac{1}{2\pi} \left(X(w) \ast \frac{2\pi}{\Delta t} \sum_n \delta \left(w - \frac{2\pi n}{\Delta t} \right) \right)$$

$$= \frac{1}{\Delta t} \sum_n X\left(w - \frac{2\pi n}{\Delta t} \right)$$

- Let’s look at an example
 - where $X(w)$ is triangular function
 - with maximum frequency w_m rad/s
 - being sampled by an impulse train, of frequency w_s rad/s

Remember convolution with an impulse? Same idea for an impulse train
Fourier transform of original signal $X(\omega)$ (signal spectrum)

Fourier transform of impulse train $\delta_T(\omega/2\pi)$ (sampling signal)

Fourier transform of sampled signal

Original spectrum convolved with spectrum of impulse train

Spectrum of sampled signal

Reconstruction filter (ideal lowpass filter)

Spectrum of reconstructed signal

$X(\omega) = H_L(\omega) X_c(\omega)$
Sampling Frequency

- In this example it was possible to recover the original signal from the discrete-time samples.
- But is this always the case?
- Consider an example where the sampling frequency ω_s is reduced:
 - i.e., Δt is increased.

Original Spectrum

- Fourier transform of impulse train (sampling signal)
- Amplitude spectrum of sampled signal

Replica spectrums overlap with original (and each other)
This is **Aliasing**
Amplitude spectrum of sampled signal

... Original Replica 1 Replica 2 ...

Reconstruction filter (ideal lowpass filter)

Due to overlapping replicas (aliasing) the reconstruction filter cannot recover the original spectrum

Sampling Theorem

- The Nyquist criterion states:

 To prevent aliasing, a **bandlimited** signal of bandwidth w_B rad/s must be sampled at a rate greater than $2w_B$ rad/s

 $$-w_s > 2w_B$$

 Note: this is a $>$ sign not a \geq

 Also note: Most real world signals require band-limiting with a lowpass (anti-aliasing) filter
Time Domain Analysis of Sampling

- Frequency domain analysis of sampling is very useful to understand:
 - sampling \((X(w)\sum \delta(w - 2\pi n/\Delta t))\)
 - reconstruction (lowpass filter removes replicas)
 - aliasing (if \(w_r \leq 2w_B\))
- Time domain analysis can also illustrate the concepts:
 - sampling a sinewave of increasing frequency
 - sampling images of a rotating wheel

A signal of the original frequency is reconstructed
A signal with a reduced frequency is recovered, i.e., the signal is aliased to a lower frequency (we recover a replica).
Nyquist is not enough …

1Hz Sin Wave: Sin(2πt) → 2 Hz Sampling

Time(s) Normalized magnitude

1Hz Sin Wave: Sin(2πt) → 4 Hz Sampling

Time(s) Normalized magnitude
Sampled Spectrum $w_s > 2w_m$

Original and replica spectrums overlap

Original freq recovered

Sampled Spectrum $w_s < 2w_m$

Lower frequency recovered ($w_s - w_m$)

Temporal Aliasing

90° clockwise rotation/frame
Clockwise rotation perceived

270° clockwise rotation/frame
(90°) anticlockwise rotation perceived i.e., aliasing

Require LPF to ‘blur’ motion
Time Domain Analysis of Reconstruction

- Frequency domain: multiply by ideal LPF
 - ideal LPF: ‘rect’ function (gain Δt, cut off w_c)
 - removes replica spectrums, leaves original
- Time domain: this is equivalent to
 - convolution with ‘sinc’ function
 - as $F^{-1}\{\Delta t \text{rect}(w/w_c)\} = \Delta t w_c \text{sinc}(w_c ft)$
 - i.e., weighted sinc on every sample
- Normally, $w_c = w_s/2$

$$x_r(t) = \sum_{n=-\infty}^{\infty} x(n\Delta t)\Delta t w_c \text{sinc}\left(\frac{w_c(t-n\Delta t)}{\pi}\right)$$
Sampling and Reconstruction
Theory and Practice

- Signal is bandlimited to bandwidth W_f
 - Problem: real signals are not bandlimited
 - Therefore, require (non-ideal) anti-aliasing filter
- Signal multiplied by ideal impulse train
 - Problems: sample pulses have finite width
 - and not \otimes in practice, but sample & hold circuit
- Samples discrete-time, continuous valued
 - Problem: require discrete values for DSP
 - Therefore, require A/D converter (quantisation)
- Ideal lowpass reconstruction (‘sinc’ interpolation)
 - Problems: ideal lowpass filter not available
 - Therefore, use D/A converter and practical lowpass filter

Practical DSP System

\[w_c < w_s/2 \]
\[w_c = w_s/2 \]
\[w_s > 2w_f \]

Note:
- $w_c > 2w_f$
- $w_c < w_s/2$
- $w_c = w_s/2$
- $w_s > 2w_f$

- Sampling and Hold
- A/D Converter
- DSP Processor
- D/A Converter
- DSP Board
Practical Anti-aliasing Filter

- Non-ideal filter
 - $\omega_c = \omega_s / 2$
- Filter usually 4th – 6th order (e.g., Butterworth)
 - so frequencies $> \omega_c$ may still be present
 - not higher order as phase response gets worse
- Luckily, most real signals
 - are lowpass in nature
 - signal power reduces with increasing frequency
 - e.g., speech naturally bandlimited (say < 8KHz)
 - Natural signals have a (approx) 1/f spectrum
 - so, in practice aliasing is not (usually) a problem

Finite Width Sampling

- Impulse train sampling not realisable
 - sample pulses have finite width (say nanosecs)
This produces two effects,
1. Impulse train has sinc envelope in frequency domain
 - impulse train is square wave with small duty cycle
 - Reduces amplitude of replica spectrums
 - smaller replicas to remove with reconstruction filter ☺
2. Averaging of signal during sample time
 - effective low pass filter of original signal
 - can reduce aliasing, but can reduce fidelity ☺
 - negligible with most S/H ☺
Amplitude spectrum of original signal

Fourier transform of sampling signal (pulses have finite width)

sinc envelope
Zero at harmonics
1/duty cycle

Fourier transform of sampled signal

Practical Sampling

- Sample and Hold (S/H)
 1. takes a sample every Δt seconds
 2. holds that value constant until next sample
- Produces ‘staircase’ waveform, $x(n\Delta t)$
Quantisation

- Analogue to digital converter (A/D)
 - Calculates nearest binary number to $x(n\Delta t)$
 - $x_q[n] = q(x(n\Delta t))$, where $q()$ is non-linear rounding fctn
 - Output modeled as $x_q[n] = x(n\Delta t) + e[n]$
- Approximation process
 - Therefore, loss of information (unrecoverable)
 - Known as 'quantisation noise' ($e[n]$)
 - Error reduced as number of bits in A/D increased
 - i.e., Δx quantisation step size reduces

$$|e[n]| \leq \frac{\Delta x}{2}$$

Input-output for 4-bit quantiser (two’s compliment)

$$\Delta x = \frac{2A}{2^m - 1}$$
where $A = \text{max amplitude}$
$m = \text{no. quantisation bits}$
Signal to Quantisation Noise

- To estimate SQNR we assume
 - ε is uncorrelated to signal and a uniform random process
- assumptions not always correct!
 - not the only assumptions we could make...
- Also known a ‘Dynamic range’ (R_D)
 - expressed in decibels (dB)
 - ratio of power of largest signal to smallest (noise)

$$R_D = 10\log_{10}\left(\frac{P_{\text{signal}}}{P_{\text{noise}}}\right)$$
Dynamic Range

Need to estimate:

1. Noise power
 - uniform random process: \(P_{\text{noise}} = \Delta x^2 / 12 \)

2. Signal power
 - (at least) two possible assumptions
 1. sinusoidal: \(P_{\text{signal}} = A^2 / 2 \)
 2. zero mean Gaussian process: \(P_{\text{signal}} = \sigma^2 \)
 - Note: as \(\sigma = A/3 \): \(P_{\text{signal}} = A^2 / 9 \)
 - where \(\sigma^2 \) = variance, \(A \) = signal amplitude

Regardless of assumptions: \(R_D \) increases by 6dB for every bit that is added to the quantiser

1 extra bit halves \(\Delta x \)
i.e., \(20 \log_{10}(1/2) = 6 \text{dB} \)
Practical Reconstruction

Two stage process:
1. Digital to analogue converter (D/A)
 - zero order hold filter
 - produces 'staircase' analogue output
2. Reconstruction filter
 - non-ideal filter: \(w_c = w_s / 2 \)
 - further reduces replica spectrums
 - usually 4th – 6th order e.g., Butterworth
 • for acceptable phase response

D/A Converter

• Analogue output \(y(t) \) is
 - convolution of output samples \(y(n\Delta t) \) with \(h_{ZOH}(t) \)

\[
\begin{align*}
 y(t) &= \sum_n y(n\Delta t)h_{ZOH}(t - n\Delta t) \\
 h_{ZOH}(t) &= \begin{cases}
 1, & 0 \leq t < \Delta t \\
 0, & \text{otherwise}
 \end{cases} \\
 H_{ZOH}(w) &= \Delta t \exp\left(-jw\Delta t \right) \sin(w\Delta t / 2) / w\Delta t / 2
\end{align*}
\]

D/A is lowpass filter with sinc type frequency response
It does not completely remove the replica spectrums
Therefore, additional reconstruction filter required
Zero Order Hold (ZOH)

- **ZOH impulse response**
 - $h_{ZOH}(t)$
 - $0 \leq t \leq \Delta f$

- **ZOH amplitude response**
 - $|R_{in}(\theta)|$
 - $\theta = 0, \frac{\pi}{4}, \frac{\pi}{2}, \pi$

- **ZOH phase response**
 - $\angle h_{ZOH}(\theta)$

'**staircase**' output from D/A converter (ZOH)

- **Time (sec)**
 - 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

- **Amplitude (V)**
 - 0, 2, 4, 6, 8, 10, 12, 14, 16

- **Output samples**
- **D/A output**
Smooth output from reconstruction filter

- D/A output
- Reconstruction filter output

Original Signal -> After Anti-aliasing LPF -> After Sample & Hold

- After Reconstruction LPF
- After D/A
- After A/D

Complete practical DSP system signals
Summary

• Theoretical model of Sampling
 – bandlimited signal (f_b)
 – multiplication by ideal impulse train ($f_s > 2f_b$)
 • convolution of frequency spectrums (creates replicas)
 – Ideal lowpass filter to remove replica spectrums
 • $f_c = f_s/2$
 • Sinc interpolation

• Practical systems
 – Anti-aliasing filter ($f_c < f_s/2$)
 – A/D (S/H and quantisation)
 – D/A (ZOH)
 – Reconstruction filter ($f_c = f_s/2$)

Questions

1. A 7 kHz sine wave is sampled at 10 kHz. What frequencies are present at the output of the A2D?
2. Determine the voltage and power ratios of a pair of sinusoidal signals that have a 3dB ratio.
3. A 1 kHz ±5 V sine wave is applied to a 14-bit A2D operating from a ±10 V supply sampling at 10 kHz. What is the SQNR of the A2D in dB?
Questions

1. $\pm 7, 10 - 7 = \pm 3, 10 + 7 = \pm 17, 20 - 7 = \pm 13, \ldots$
 - Note aliasing and symmetry of spectrum
2. Rearrange: $3 = 10 \log_{10} \left(\frac{P_1}{P_2} \right) = 10^{3/10} = 2$
 - Rearrange: $3 = 20 \log_{10} \left(\frac{V_1}{V_2} \right) = 10^{3/20} = \sqrt{2}$
3. A2D resolution: $\Delta x = (2 \times 10) / (2^{14} - 1)$
 - $P_{\text{noise}} = \Delta x^2 / 12$
 - $P_{\text{signal}} = 5^2 / 2$

$$SQNR = 10 \log_{10} \left(\frac{P_{\text{signal}}}{P_{\text{noise}}} \right) dB$$