Fmdlng problems cheat sheet e Variables or functions being redeclared may indicate that you need #ifndef
Joel Fenwick, 2010 protection in your header files.
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e Look on the previous line(s). A missing ; . or mismatched ( [ { on earlier lines
can confuse the compiler. A new line does not stop C from thinking of things as

a unit.
If your program does not compile see below. If your program does compile but does

not work as expected see the diagram. e Do you have Dos/Windows end of lines in your files?

e If you have copy and pasted code from a pdf/webpage/other non-plain text doc-
Program does not compile ument, make sure that the double quotes have not been replaced by open and
close quotes.
Always deal with the first error and then recompile. The first thing to do is work out

what type of error it is. Linker errors

1. Compile error - your source code cannot be translated into object code. e Have you listed all the libraries you need to link to? This is most likely to be

a problem when you are writing a program using functions you have not called
before. Different operating systems have different library requirements - check
the man pages for the functions you wish to call.

(a) Errors messages with line numbers are mostly compile errors.
(b) Any sort of syntax error.
(¢) Invalid characters. : . )
e Not #include-ing a header where you use a function can confuse C.
2. Linker error - your object code fragments can’t be merged into a consistant

e If a variable is included in a header make sure it is declared extern.
program.

e Do not place function bodies in header files unless they are protected against

(a) Unresolved symbols ; l
duplicate definitions.

(b) Errors reported in .o files or files in /tmp (unless you put them there.)

(¢) The error does not appear when the -c switch is used. Misc

Compile errors e Remember the goal is to understand problems and fix them. If a bug disappears
p and you do not understand what caused it, it may have moved somewhere else.
e Read the error message carefully. If you do not understand what it is saying look

it up or ask for help. e When printing for debugging, use unbuffered output or flush your streams man-

ually.
e Identify the line which the compiler is complaining about - be careful reading
messages about files included by other files.
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Make sure you can kill programs
before trying to fix the problem.

assumptions bad behaviour

(~C, ™\, ps, xargs, grep )

Stubbing or controlled testing
print out args to system calls
DO NOT just run the program again

Inspection - Check system calls
system(), fork(), popen(),
kill()




