Fmdlng problems cheat sheet e Variables or functions being redeclared may indicate that you need #ifndef
Joel Fenwick, 2010 protection in your header files.
The University of Queensland

e Look on the previous line(s). A missing ; . or mismatched ([{ on earlier lines
can confuse the compiler. A new line does not stop C from thinking of things as

a unit.
If your program does not compile see below. If your program does compile but does

not work as expected see the diagram. e Do you have Dos/Windows end of lines in your files?

e If you have copy and pasted code from a pdf/webpage/other non-plain text doc-
Program does not compile ument, make sure that the double quotes have not been replaced by open and
close quotes.
Always deal with the first error and then recompile. The first thing to do is work out

what type of error it is. Linker errors

1. Compile error - your source code cannot be translated into object code. e Have you listed all the libraries you need to link to? This is most likely to be

a problem when you are writing a program using functions you have not called
before. Different operating systems have different library requirements - check
the man pages for the functions you wish to call.

(a) Errors messages with line numbers are mostly compile errors.
(b) Any sort of syntax error.
(¢) Invalid characters. : .)
e Not #include-ing a header where you use a function can confuse C.
2. Linker error - your object code fragments can’t be merged into a consistant

e If a variable is included in a header make sure it is declared extern.
program.

e Do not place function bodies in header files unless they are protected against

(a) Unresolved symbols ; l
duplicate definitions.

(b) Errors reported in .o files or files in /tmp (unless you put them there.)

(¢) The error does not appear when the -c switch is used. Misc

Compile errors e Remember the goal is to understand problems and fix them. If a bug disappears
p and you do not understand what caused it, it may have moved somewhere else.
e Read the error message carefully. If you do not understand what it is saying look

it up or ask for help. e When printing for debugging, use unbuffered output or flush your streams man-

ually.
e Identify the line which the compiler is complaining about - be careful reading
messages about files included by other files.

Program compiles

Yes
y
Does it produce warnings under
-Wall -pedantic ?
A

Yes
How do you know?

Does it work?

No

v

Is the problem repeatable?

Yes

No

Try to produce a
simpler test case
where the problem
can be reproduced reliably

Please state the nature
of the programming
emergency.

The program

A A

Does testing take No

Yes ;
a lot of time
or planning?
Yes
3 Race conditions

All simplification seems
to make the problem
disappear

Y

threading issues?

:

Taking a long
time to complete

Io;:: usp/ the task / gdb
9 stop - where are we?
cont

stop - are we in the
same place?

Blocked on a system call
eg: read()

Trace /
binary search

No

produces bad
output

Is the answer
computed correctly?

Check the
output routine

Where does it crash?
How do you know?

Determine immediate
cause of crash

Y
% l Determine
destroys everything printf gdb / real cause
around it valgrind

v

Inspect critical
regions

Bad system call + +

Add more checks
* to verify your

Binary search
for

Valgrind/
bcheck

Unitialised memory

bad pointers?

By Joel Fenwick, 2010

Make sure you can kill programs
before trying to fix the problem.

assumptions bad behaviour

(~C, ™\, ps, xargs, grep)

Stubbing or controlled testing
print out args to system calls
DO NOT just run the program again

Inspection - Check system calls
system(), fork(), popen(),
kill()

