Introduction to

C Programming

Rob Miles

Department of Computer Science

Contents

Computers 1
AN INtroduction t0 COMPULEL'S.......ccueiiueiriiiiieriie ettt s 1
Hardware and SOftWEaI€ooeeiiiiiiiierie e 1

Data and INformationc.coooveiceeiiie e 2

Data PrOCESSING. ... ceiveeiteeitierieeriee st sttt sie e bbbt sb e sbe b e b sbeesaeesaeesaeas 2
Programming Languages 4
What 1S Programiming?eoieeieeieeniiesiee sttt sttt st s ne e e 4

From Problem t0 Program ..o 5

Programming LANQUBOESc.ueeiteerieerieerie ettt ettt ettt ettt et see bbb e 8

C 8
N oo Q- PSPPSR 8

MEKING C RUN. ...ttt bbb 9

Creating C ProgramsS.......ooueeieeieiiee ettt sttt sttt 9

What CompriseSa C PrograM?......coeeieeieeieenee ettt 10

The AdvantageS Of C.......ooiiiiiiiiiiereee e 11

The DisadvantageS Of C........coeiiiiiiiiieiieree e 11

A First C Program 11
The Program EXAMPIE........oceiiiie e st esntee e snee e snaeeseeeenees 11
1 o] [T [SR 12

D) [0 T DTS 12

177 Lo SR 12

10>V 13

(V0] o 1 PPV UR TR 13
ettt er e R b et e ee e reeneenee e 13

10 > SR 13

height, width, area, wood_length.........ccccccv i 13

L e ettt et ettt eeeeeereeetteesseeestesstasaseeeetteesttaaattteetttttturtettett . —eattrrt i reartrrrr 14

S0 | SR 14
(S PRSST 14

DT ettt ettt Rt tenEe e e eenaente e e e neenen 14

GNBIGNT. . s 15
R 15

scanf ("%f", &WIALN) ;e 15

area = 2 * height * Width ;.....cccveoii i 15
wood_length=2* (height + width) * 3.25;.....cccoiiiiii 16

014111 PP RUR TR 16

("The area of glass needed is : %f metres.\n",.......ccccccv v vccn e, 16

LT U RSP RTS 17

printf ("The length of wood needed is : %f feet.\n", wood_length) ; 17

e ettt et Rt Rt e eEe Rt Rt e e e eReeReeneeneeneeareeneeneees 17

L0 T 10 = o 17

Variables 18

VAl ADIES N0 DALA. ueeeeeererieeeeeeeeeaeeeeeeeeeasssesssseessessesessssssssssrssssssessrssrsssrrnnns 18

TYPES Of VATADIES ... e 18
(D= o F= g (o OO PR 18
INE VANTAIES. ... e 19

Float VariahDEScoeieieeeie s 19

Char VAITADIES ... 19

TS TgTo T Y o= SRRSO R TR 19
Variabl@ DECIarationcooieiieieeieee e e 19
GiviNg ValUESTO Vari@Dl S ...t s e 20
(0155 o] SRR 21

Types of Data in EXPrESSIONS.......ccoeeieiiierieenieesieesieesieesiee s sieeseee s seeeseee e 22

Getting Values into the Programcieiiiiiieiei e 23
Writing a Program 24
COMMIBNES...cctee ettt rb e e e e sre e sn e e e snneennneenas 24
PrOOram FIOWcoiuiiiiiiie ettt bbbt bbb b sae e sne e 24
Conditional EXECULION = if........coeiiiiiieiienieseeesee e 25
Conditions and Relational OpErators..........cooeeveeieeneereenee e 26
Combining LOGiCal OPEIalOrS......ccveieeiieerieerieesieesieesieesieesieesieesieesreesieesreeseeens 27
LUmping Code TOGELNESooiieieeierie e e 27

Magic Numbers and #0efiNe.........oocveiiiiiiiie e 28

LLO0PDS ..ttt e 29
Breaking Out Of LOOPScoiveeiieiieiie ettt 32

Going Back tothe Top of 8L 00Dcoiieiieiieiienee e 32

More Complicated DECISIONS.......c.eeiuierieeieeie ettt e 33
Complete Glazing Prograimc.coveeieeieeniee et s 33
Operator SNOMNANG........cooeiiieiieiee e e 34
StatemMentS AN VAIUES........cooeiiiiiiierie ettt 35

=2 0 g A1 01T oo TSRS 36
Functions 37
FUNCLIONS SO A ...ttt naeas 37
FUNCLION HEAAINGve ettt e 37
FUNCLION BOOYveetieiiesieeteete ettt et s 38

<L o PSR PTUR PR 38

CalliNg @ FUNCHION........ooiiiiiiieiieee e neee 38

RS o0 o OO P PP UPPOPRROPRRPRI 39
Variables LoCal 10 BIOCKS........cciiiiiiiiiiieriie e 40

FUll FUNCLIONS EXAMPIE......cviiiiiieeeee e 40

0T 1= £ OO SPRTR 42
NULL POINEENS...tietierieesie ettt ettt et et 44
POINtErs aNd FUNCLIONScouiiiiiiieie e e 44

AL C VATADIES....eeeeieee e 45
Arrays 46
WHY WEINEEO ATTAYS ..ottt sttt sttt sttt sttt sttt ettt st s be e sb e sbeesbeesbeesree s 46
S0 1] oo TR VRRURRRRIN 47

ATTAY TYPES ANA SIZES.... oottt sttt st sttt st bbb sbe e sbeesbeenreens 49
More Than ONe DIMENSIONccoviiieiieeeie e e e 50
Switching 53
Making MUItiple DECISIONS.ccoeiitiiiiieiie ettt naeas 53

Strings 55

PULtING VAlUES INEO SEHNGS ...ttt 56

USING SENGS ettt sttt sttt b bbbt bt s b e sbe e sb e sbe e sbeesb e e sbeenbe e beenneenaeas 57

THE SIHNG LIBIary oo e 58

S 1010 TSP 59

S CIMIP e 59

S 1 1= o PRSP OTRRPR 59

Reading and Printing SENGS........coiiiiiiiieiieiie e 59

BOMD Proof TNPUL.......cc.eiiiieie e 60
Structures 61
WHEL 1S 8 SITUCLUNE?. ...ttt sttt sttt st st sb e sbe e sbeesreenaee s 61

HOW SETUCEUFES WOTK ...ttt 63
POINTErS 1O SITUCTUNES. ...ttt sttt sttt sb e sb e saeesneenaeas 63
Defining YOUr OWN TYPESviiitiiitieitee sttt sttt sttt sttt sttt sae e b b saeesneenaeas 64

Files 65
WheN dOWE USE FITES?.....ooieieeee ettt nre e 65
SIreaMS AN FlES...c..viiiiiieee e 65

FOPEN AN FLlOSE .. e 66

0o (=S 1 41T RSSO 68

FIIE FUNCLIONS ...ttt sb e bbb sae e sne e 70

fread @nd FWETE.......eieeiee s 70

The End of the File and Errors............ccoociiiiiiiici e 71
Memory 72
FELCHING IMEITIONY ...ttt bbbt bbb bbb nneenaeas 72

MBITOC ...ttt et et e e 72

L= =TT TR RPR PR 73

TRENEAD ... e 73

C and Large Programs 74
Building Large Programs in Coceoiiiiiiiieiie et 74

The Compile and Link ProCeSS.........couuiiiiiirieiienee e 74

Referring to EXternal ItemS ..o 75

THEe MaKe PrOgram......cooiiiiiiiieiiesiie ettt 76

PrOJECES ...ttt 76

THE C PrE-PrOCESSOIcte ittt ettt et bbb e 77
TheANCIUAE DITECHIVEcveiieieiie e 77

Conditional CoMPITALIONccieiiierieiie e 77

A SAMPIE PIOJECE ...ttt sttt b bbb b sbe e sreenre e 78
TREPIODIEM ... 78

THE DALA SEUCIUNE ...ttt 78

Program FilES........coi i e 79

The Most IMpPOrtant Bit!..........ccooiiriiiiie s 84

Glossary of Terms 93
Index 95

This document is© Rob Miles 2001 Department of Computer Science, The University of Hull
All rights reserved. No reproduction, copy or transmission of this publication may be made without written
permission.

The author can be contacted at:

r.s.miles@dcs.hull.ac.uk

The Department of Computer Science, The University of Hull,
HULL, HU6 7RX

Computers

An Introduction to Computers

Qn: Why does a bee hum? One way of describing a computer is as an eectric box which humms. This, whilst
Ans. Because it doesn't know technically correct, can lead to significant amounts of confusion, particularly
the words! amongst those who then try to program afridge. A better way isto describeit as:

A device which processes information according to instructions it has been
given.

This general definition rules out fridges but is not exhaustive. However for our
purposesit will do. Theinstructions you give to the computer are often called a
program. The business of using a computer is often called programming. This
isnot what most people do with computers. Most users do not write programs,
instead they talk to programs written by other people. We must therefore make
adistinction between users and programmers. A user has a job which he or she
finds easier to do on a computer running the appropriate program. A
programmer has a masochistic desire to tinker with the innards of the machine.
One of the golden rulesisthat you never write your own program if thereis
already one available, i.e. akeen desireto process words with a computer
should not result in you writing a word processor!

However, because you will often want to do things with computers which have
not been done before, and further because there are people willing to pay you to
doit, we are going to learn how to program as well as use a computer.

Before we can look at the fun packed business of programming though it is
worth looking at some computer terminology:

Hardware and Software

If you ever buy a computer you are not just getting a box which humms. The
box, to be useful, must also have sufficient built in intelligence to understand
simple commands to do things. At this point we must draw a distinction
between the software of a computer system and the hardware.

Hardware isthe physical side of the system. Essentialy if you can kick it, and it
stops working when immersed in a bucket of water, it is hardware. Hardware is
the impressive pile of lights and switchesin the corner....

Software is what makes the machine tick. If a computer has a soul it keepsitin
its software. Software uses the physical ability of the hardware, which can run
programs, do something useful. It is called software because it has no physical

Computers ?1

We are going to use an
operating system called MS-
DOS. Later we will be using

UNIX.

This makes a computer a very
good "mistake amplifier”, as
well as a useful thing to

existence and it is comparatively easy to change. Software is the voice which
says "Computer Running” in a Star Trek film.

All computers are sold with some software. Without it they would just be a novel
and highly expensive heating system. The software which comes with a computer is
often called its Operating System. The Operating System makes the machine
usable. It looks after all the information held on the computer and provides | ots of
commands to allow you to manage things. It also lets you run programs, ones you
have written and ones from other people. You will haveto learn to talk to an
operating system so that you can create your C programs and get them to go.

Data and Information

Peopl e use the words data and information interchangeably. They seem to think
that one meansthe other. | regard data and information as two different things:
Data isthe collection of ons and offs which computers store and manipul ate.

Information is the interpretation of the data by people to mean something.
Strictly speaking computers process data, humans work on information. An
example, the computer holds the bit pattern:

11111111 11111111 11111111 00000000
However you could regard this as meaning:

"you are 256 pounds overdrawn at the bank"
or

"you are 256 feet below the surface of the ground"
or

"eight of the thirty two light switches are off"

The transition from data to information is usually made when the human reads
the output. So why am | being so pedantic? Becauseit isvital to remember that
a computer does not "know" what the data it is processing actually means. As
far asit isconcerned dataisjust patterns of hits, it is you who gives meaning to
these patterns. Remember this when you get a bank statement which says that
you have £8,388,608!

Data Processing

Computers are data processors. Information is fed into them, they do something
with it, and then generate further information. A computer program tells the
computer what to do with the information coming in. A computer works on
data in the same way that a sausage machine works on meat, something is put
in one end, some processing is performed, and something comes out of the
other end:

Computer

A program is unaware of the data it is processing in the same way that a sausage
machineis unaware of what meat is. Put a bicycleinto a sausage machine and it
will try to make sausages out of it. Put duff data into a computer and it will do
equally useless things. It is only us people who actually ascribe meaning to data (see
above), as far athe computer is concerned it isjust stuff coming in which hasto be
manipulated in some way.

Computers ? 2

Note that this "raisesthe
stakes' in that the
consequences of software
failing could be very
damaging.

A computer program is just a sequence of instructions which tell a computer
what to do with the data coming in, and what form the data sent out will have.

Note that the data processing side of computers, which you might think is
entirely reading and writing numbers, is much more than that, examples of
typical data processing applications are:

Digital Watch : A micro-computer in your watch is taking pulses from a
crystal and requests from buttons, processing this data and producing a display
which tells you the time.

Car : A micro-computer in the engineis taking information from sensors
telling it the current engine speed, road speed, oxygen content of the air, setting
of the accelerator etc and producing voltages out which control the setting of
the carburettor, timing of the spark etc, to optimise the performance of the
engine.

CD Player : A computer istaking asignal from the disk and converting it into
the sound that you want to hear. At the sametimeit is keeping the laser head
precisely positioned and also monitoring all the buttonsin case you want to
select another part of the disk.

Note that some of these data processing applications are merely applying
technology to existing devices to improve the way they work. However one, the
CD player, could not be made to work without the built-in data processing
ability.

Most reasonably complex devices contain data processing components to
optimise their performance and some exist only because we can build in
intelligence. It isinto thisworld that we, as software writers are moving. It is
important to think of business of data processing as much more than working
out the company payroll, reading in numbers and printing out results. These are
the traditional uses of computers.

Asenginearsit isinevitable that a great deal of our timewill be spent fitting data
processing components into other devicesto drive them. You will not press a switch
to make something work, you will press a switch to tell a computer to make it work.
These embedded systems will make computer users of everybody, and we will have
to make sure that they are not even aware that there is a computer in there!

Computers ? 3

Programming Languages

What is Programming?

| tell people | ama " Software

Engineer".

We are back to the term
" Software Engineer" again!

Programming is ablack art. It isthe kind of thing that you grudgingly admit to
doing, at night, with the blinds drawn and nobody watching. Tell people that you
program computers and you will get one of the following responses:

1. A blank stare.

2. "That'sinteresting", followed by along description of the double
glazing that they have just had fitted.

3. "My younger brother hasa Sinclair Spectrum. He's a programmer
aswdl."

4. A look which indicates that you can't be a very good one as they
all drive Ferraris and tap into the Bank of England at will.

Programming is defined by most people as earning huge sums of money doing
something which nobody can understand.

Programming is defined by me as deriving and expressing a solution to a given
problemin a formwhich a computer system can understand and execute.

One or two things fall out of this definition:

? You need to be able to solve the problem yourself before you can
write a program to do it.

? The computer has to be made to understand what you are trying to
tell it to do.

| like to think of a programmer as a bit like a plumber! A plumber will arrive at a
job with abig bag of tools and spare parts. Having looked at it for awhile, tut
tutting, he will open his bag and produce various tools and parts, fit them all
together and solve your problem. Programming isjust likethis. You are given a
problem to solve. Y ou have at your disposal a big bag of tricks, in thiscase a
programming language. Y ou look at the problem for a while and work out how to
solveit and then fit the bits of the language together to solve the problem you have
got. The art of programming is knowing which bits you need to take out of your bag
of tricks to solve each part of the problem.

Programming Languages ? 4

Programming is not about
mathematics, it is about
organisation.

The worst thing you can say
to a customer is"l can do
that". Instead you should
think "Is that what the
customer wants?".

From Problem to Program

The art of taking a problem and breaking it down into a set of instructions you can
give a computer isthe interesting part of programming. Unfortunately it is also the
most difficult part of programming aswell. If you think that learning to program is
simply a matter of learning a programming language you are very wrong. In fact if
you think that programming is Ssmply a matter of coming up with a program which
solves a problem you are equally wrong!

There are many things you must consider when writing a program; not all of
them are directly related to the problem in hand. | am going to start on the basis
that you are writing your programs for a customer. He or she has problem and
would like you to write a program to solve it. We shall assume that the
customer knows even less about computers than we do!

Initially we are not even going to talk about the programming language, type of
computer or anything like that, we are smply going to make sure that we know
what the customer wants. Coming up with a perfect solution to a problem the
customer has not got is something which happens surprisingly often in the real
world.

Thisisamost akind of self discipline. Programmers pride themselves on their
ability to come up with solutions, so as soon as they are given a problem they
immediately start thinking of ways to solveit, this almost a reflex action. What you
should do isthink "Do | really understand what the problem is?'. Before you solve a
problem you should make sure that you have a watertight definition of what the
problem is, which both you and the customer agree on. In the real world thisis
often called a Functional Design Specification or FDS. Thistells you exactly what
the customer wants. Both you and the customer sign it, and the bottom lineisthat if
you provide a system which behaves according to the design specification the
customer must pay you. Once you have got your design specification, then you can
think about ways of solving the problem.

Y ou might think that thisis not necessary if you are writing a program for
yourself; there is no customer to satisfy. Thisis not true. Writing an FDS forces
you to think about your problem at a very detailed level.

A Simple Problem

Consider the scenario; You are sitting in your favourite chair in the pub
contempl ating the universe when you are interrupted in your reverie by afriend
of yours who sdlls double glazing for a living. He knows you are a programmer
of sorts and would like your help in solving a problem which he has:

He has just started making his own window units and islooking for a program
which will do the costing of the materials for him. He wants to just enter the
dimensions of the window and then get a print out of the cost to make the
window, in terms of the amount of wood and glass required.

"Thislooks like a nice little earner” you think, and once you have agreed a
priceyou start work. Thefirst thing you need to do isfind out exactly what the
customer wants you to do...

Specifying the Problem

When considering how to write the specification of a system there are three
important things:

? What information flows into the system.
? What flows out of the system.
? What the system does with the information.

Programming Languages ? 5

Note that both you and the
customer must understand
the document!

There arelots of ways of representing thisinformation in the form of diagrams,
for now we will stick with written text when specifying each of the stages:

Information going in

In the case of our immortal double glazing problem we can describe the
information as:

? Thewidth of awindow.
? Theheight of the window.

Information coming out

Theinformation that our customer wantsto seeis:
? theareaof glassrequired for the window

? thelength of wood required to build a frame.

What the program actually does

The program can derive the two values according to the following equations :

glass area = width of window * height of window
wood length = (width of window + height of window) * 2

Putting in more detall

We now have afairly good understanding of what our program is going to do
for us. Being sensible and far thinking people we do not stop here, we now have
to worry about how our program will decide when the information cominginis
actually valid.

This must be donein conjunction with the customer, he or she must understand
that if information is given which fits within the range specified, your program
will regard the data as valid and act accordingly.

In the case of the above we could therefore expand the definition of data coming
inas:
? Thewidth of the window, in metres and being a value between 0.5
Metres and 3.5 metresinclusive.

? Theheight of the window, in metres and being a value between
0.5 metres and 2.0 metresinclusive.

Note that we have also added units to our description, thisis very important -
perhaps our customer buys wood from a supplier who sells by the foot, in which
case our output description should read :

? Theareaof glassrequired for the window, in square metres.

? Thelength of wood required for the frame, given in feet using the
conversion factor of 3.25 feet per metre.

Having written this all up in aform that both you and the customer can understand,
we must then both sign the completed specification, and work can commence. In a
real world you would now create a procedure which will alow you to prove that the
program works, you could for example say :

If I give the above program the inputs 2 metres high and 1 metre wide the
program should print out : 2 square metres of glass and 9.75 feet of wood.

The test procedure which is designed for a proper project should test out all
possible states within the program, including the all important error conditions.

Programming Languages ? 6

Better yet, set up a phased
payment system so that you
get some money as the system
is developed.

Fact: If you expect to derive
the specification as the
project goes on either you
will fail to do the job, or you
will end up performing five
times the work!

Fact: More implementations
fail because of inadequate
specification than for any
other reason!

In alarge system the person writing the program may have to create a test
harness which isfitted around the program and will allow it to be tested. Both
the customer and the supplier should agree on the number and type of the tests
to be performed and then sign a document describing these.

At this point the supplier knowsthat if a system is created which will passall the
tests the customer has no option but to pay him for the work! Note also that because
the design and test procedures have been frozen, there is no ambiguity which can
lead to the customer requesting changes to the work although of course this can still
happen!

Note alsoin a"proper" system the customer will expect to be consulted as to
how the program will interact with the user, sometimes even down to the colour
of the letters on the display! Remember that one of the most dangerous things
that a programmer can think is"Thisiswhat he wants'! The precise interaction
with the user - what the program does when an error is encountered, how the
information is presented etc., is something which the customer is guaranteed to
have strong opinions about. Ideally all thisinformation should be put into the
specification, which should include layouts of the screens and details of which
keys should be pressed at each stage.

If this seemsthat you are getting the customer to help you write the program then
you are exactly right! Your customer may have expected you to take the description
of the problem and go into your back room - to emerge later with the perfect
solution to the problem. Thisis not going to happen. What will happen isthat you
will come up with something which is about 60% right. The customer will tell you
which bitslook OK and which bits need to be changed. Y ou then go back into your
back room, muttering under your breath, and emerge with another system to be
approved. Again, Robert's law says that 60% of the duff 40% will now be OK, so
you accept changes for the last little bit and again retreat to your keyboard....

The customer thinks that thisis great, reminiscent of a Saville Row tailor who
produces the perfect fit after numerous alterations. All the customer doesis ook
at something, suggests changes and then wait for the next version to find
something wrong with.....

If your insisting on a cast iron specification forces the customer to think about
exactly what the system is supposed to do and how it will work, all to the better.
The customer may well say "But | am paying you to be the computer expert, | know
nothing about these machines'. Thisis no excuse. Explain the benefits of "Right
First Time" technology and if that doesn't work produce a revolver and force the
issuel

Again, if I could underlinein red | would : All the above apply if you are
writing the program for yourself. Y ou are your own worst customer!

Y ou may think that | am labouring a point here, the kind of simple systems we
are going to create as we learn to program are going to be so trivial that the
above techniques are far too long winded. Y ou are wrong. One very good
reason for doing thiskind of thing isthat it gets most of the program written for
you - often with the help of the customer. When we start with our double
glazing program we now know that we haveto :

read in the width

verify the value

read in the height

verify the value

calculate width times height and print it
calculate (width + height) * 2 * 3.35 and print it

The programming portion of the job is now simply converting the above
description into alanguage which can be used in a computer.......

Programming Languages ? 7

Programming Languages

Please note that this does not
imply that tape worms would
make good programmers!

Time Files like an Arrow.
Fruit Flies like a Banana!

Y ou might ask the question "Why do we need programming languages, why
can we not use something like English?' There are two answers to this one:

1. Computersaretoo stupid to understand English.
2. English would make alousy programming language.

To takethefirst point. We cannot make very clever computers at the moment.
Computers are made clever by putting software into them, and there are limitsto
the size of program that we can create and the speed at which it can talk to us. At
the moment, by using the most advanced software and hardware, we can make
computers which are about as clever as a tape worm. Tape worms do not speak very
good English, therefore we cannot make a computer which can understand English.
The best we can do is get a computer to make sense of a very limited language
which we usetotell it what to do.

To take the second point. English as alanguage is packed full of ambiguities. It is
very hard to express something in an unambiguous way using English, if you do not
believe me, ask any lawyer!

Programming languages get around both of these problems. They are simple
enough to be made sense of by computer programs and they reduce ambiguity.
There are very many different programming languages around, you will need to
know more than oneif you are to be a good programmer.

A look at C

There are literally hundreds
of programming languages
around, you will need to
know at least 3!

We are going to learn a language called C. C isavery flexible and powerful
programming language originally designed in the early 1970s. It is famous as the
language the UNIX operating system was written in, and was specially designed for
this. However its use has now spread way beyond that field and it is currently very
popular.

Cisaprofessional language. So what do | mean by that? Consider the chain
saw. If I, Rob Miles, want to use a chain saw | will hire one from a shop. As|
am not an experienced chain saw user | would expect it to come with lots of
built in safety features such as guards and automatic cut outs. These will make
me much safer with the thing but will probably limit the usefulness of the toal,
i.e. because of all the safety stuff | might not be able to cut down certain kinds
of tree. If | wasareal lumberjack | would go out and buy a professional chain
saw which has no safety features whatsoever but can be used to cut down most
anything. If I make a mistake with the professional tool | could quite easily lose
my leg, something the amateur machine would not et happen.

c?8

You actually write the
program using some form of
text editor - which may be
part of the compiling and
linking system.

It is possible to get the
compiler to give you
warningsin this case.

In programming terms this meansis that C lacks some safety features provided
by other programming languages. This makes the language much more flexible.

However, if | do something stupid C will not stop me, so | have a much greater
chance of crashing the computer with a C program than | do with a safer
language.

Thisis not something to worry about, you should always work on the basis that
any computer will tolerate no errors on my part and anything that | do which is
stupid will always cause a disaster!

Making C Run

C isusually a compiled programming language. The computer cannot understand
the language directly, so a program called a compiler convertsthe C into the
machine code instructions which do the job. Actually getting a program to run is
however a two stage process. First you show your program, often called the source,
to the compiler. If the compiler givesit the thumbs up you then perform a process
called linking.

Linking iswhen all the various portions of your program are brought together
to form something which can be run. Y ou might ask "Why to we link things? -
the compiler has created a machine code version of my program, can't | just run
that?'. The reason that we have the additional linking processisthat it allows
usto reuse standard pieces of code from alibrary. Many things your program
will do are common to lots of other programs, for example you will want to
read information from the keyboard and you will want to send information to
the display. Rather than compile the program code which does this every time
you compile your program, a much more efficient way is to put a compiled
version of thiscodeinto alibrary. Your program just contains a reference to the
particular function you want to use, the linker then loads the relevant part from
the library when it creates your program.

Note that a side effect of thisisthat if you refer to a function which does not exist,
the compiler will not mind particularly - but the linker will not find the item in its
library, and thus give you an error.

Oncethelinker hasfinished you are |eft with a free standing file which is your
program. If you run this your program gets control!

Creating C Programs

The actual business of constructing and compiling the depends on the computer
you are using and the particular version of C. We will look at the business of
producing your program in the laboratory section of this course. Initialy it is
best if we just work through your programs on paper. | reckon that you write
programs best when you are not sitting at the computer, i.e. the best approach is
to write (or at least map out) your solution on paper along way away from the
machine. Once you are sitting in front of the keyboard thereis a great
temptation to start pressing keys and typing something in which might work.
Thisisnot good technique. You will aimost certainly end up with something
which almost works, which you will then spend hours fiddling with to get it
going.

If you had sat down with a pencil and worked out the solution first you would
probably get to a working system in around half thetime. | am not impressed by
hacking programmers who spend whole days at terminals fighting with
enormous programs and debugging them into shape. | am impressed by
someone who turns up, typesin the program and makes it work first timel!

Cc?9

The compiler directivesare
the same for all versions of
C.

Seasoned programmers break
down a probleminto a
number of smaller ones and
make a function for each.

What Comprises a C Program?

A program is the thing that you write to perform a particular task.

It will actually be afile of text, often called a sourcefile. Thisiswhat the
compiler actson. A source file contains three things :

? instructionsto the compiler

? information about the structures which will hold the data to be
stored and manipulated.

? instructions which manipulate the data.

Totakethesein turn

Controlling the Compiler

One of the very powerful features of C isthe way in which you can change the way
the compiler processes your program by including directives. There are many
directives available, in a C program a directive is always preceded by the #
character and must appear right at the beginning of aline. Directives can be used
to "build in" particular values, for example constants like PI, and also allow you to
change which parts of the program which the compiler works on, making it
possible to use the same piece of program on several different types of computer.

Storing the Data

Programs work by processing data. The data has to be stored within the
computer whilst the program processesit. All computer languages support
variables of one form or another. A variableis simply a named location in
which avalueis held whilst the program runs. C also lets you build up
structures which can hold more than one item, for example a single structure
could hold all the information about a particular bank customer.

Describing the Solution

The actual instructions which describe your solution to the problem must also
be part of your program. In the case of C alump of program which does one
particular thing is called afunction.

A function can be very small, or very large. It can return a value which may or may
not be of interest. It can have any name you like, and your program can contain as
many functions as you see fit. One function may refer to others. The C language
also has alarge number of function libraries available which you can use. These
save you from "re-inventing the whed" each time you write a program.

Within the function there will be a number of statements. A statement isan
instruction to perform one particular operation, for example add two numbers
together and store theresult. The really gripping thing about programsisthat a
statement can decide which statement is performed next, so that your program
can look at things and decide what to do.

Y ou give a name to each function that you create, and you try to make the name
of the function fit what it does, for example menu or save_file. TheC
language actually runs your program by looking for a function with a special
name, main. Thisfunction is called when your program starts running, and
when main finishes, your program ends.

c?10

The Advantages of C

The good news about C isthat you can write code which runs quickly, and your
program is very "close to the hardware'. By that | mean that you can access low
level facilitiesin your computer quite easily, without the compiler or run time
system stopping you from doing something potentially dangerous.

The use of compiler directives to the pre-processor make it possible to produce
asingleversion of a program which can be compiled on several different types
of computer. In this sense C is said to be very portable. The function libraries
are standard for all versions of C so they can be used on all systems.

The Disadvantages of C

The disadvantages of C fall neatly from the advantages. The biggest one is that
you can write C programs which can fail in very catastrophic ways. These
programs will appear totally valid as far as the compiler is concerned but will
not work and may even cause your computer to stop. A more picky language
would probably notice that you were doing something stupid in your program
and allow you to find the error before it crashed your computer! However a
more picky language would probably not allow you to write the program in the
first place!

Anocther disadvantage of C isthat it allows you to write very terse code. You
can express exactly what you want to do in very few statements. Y ou might
think that thisis nice, because it makes your programs even more efficient, but
it has the side effect of making them much harder to understand. At thetime
you write the code you know exactly what each part is supposed to do. If you
come back to the program in several months you will need timeto "get back
insideit". If the code is written very tightly you will take much longer to do
this, and other people may not be able to understand it at all! | write code which
is not the most efficient possible, but is easy to understand. | am sacrificing
program performance for ease of maintenance.

A First C Program

The Program Example

Perhaps the best way to start looking at C isto jump straight in with our first
ever C program. Hereit is.

A First C Program ? 11

The pre-processor isthe part
of the compiler which
actually gets your program
fromthefile.

All versions of C have exactly
the same library functions.

The .h potion is the language
extension, which denotes an
include file.

Some C programs have the
type of int so that the main
function can return a value to
the operating system which
runsit. We are not going to
do this.

#include <stdio.h>

void main (void)

{
float height, width, area, wood_length ;
scanf ("%f", &height) ;
scanf ("%f", &width) ;
area = 2 * height * width ;
wood_length =2 * (height + width) * 3.25 ;
printf ("The area of glass is : %f metres. \n",

area) ;

printf ("The length of wood is : %f feet. \n",
wood_length) ;

}

Y ou should easily work out what it does, but what do all the various bits mean?

#include

Thisisapre-processor directive. It is not part of our program, it is an instruction to
the compiler to make it do something. It tells the C compiler toinclude the
contents of afile, in this case the system file stdio.h. The compiler knowsit isa
system file, and therefore must be looked for in a special place, by the fact that the
nameisenclosed in <> characters. (see later)

<stdio.h>

Thisisthe name of the standard library definition file for all STanDard Input
Output. Your program will almost certainly want to send stuff to the screen and
read things from the keyboard. stdio.h isthe name of thefilein which the
functions that we want to use are defined. A function is simply a chunk of program
that we want to use a lot, so we stuck it in a parcel and gave it aname. The function
we want to useis called printf (seelater). To use printf correctly C needs to know
what it looks like, i.e. what thingsit can work on and what value it returns. The
actual code which performsthe printf will betied in later by the linker. Note that
without the definition of what printf looks like the compiler makes a guess when it
seesthe use of it. This can lead to the call failing when the program runs, a
common cause of programs crashing.

The <> characters around the name tell C to look in the system area for thefile
stdio.h. If | had given the name "robsstuff.h" instead it would tell the compiler
to look in the current directory. Thismeansthat | can set up libraries of my own
routines and use them in my programs, a very useful feature.

void

Means literally this means nothing. In this caseit is referring to the function whose
name follows. It tells C that this function, which could return something
interesting, (see printf) in fact returns nothing of interest whatsoever. Why do this?
Because we want to be able to handle the situation where | make a mistake and try
to ascribe meaning to something which has none. If the C compiler has already
been told that a given entity has no meaning it can detect my mistake and produce
an error.

A First C Program ? 12

In this example the only
function in the programis
main. Larger programs are
split up into lots of functions.

main

The name of the function currently being defined. The name main is specia, in
that the main function is actually the one which is run when your program is used.
A C program is made up of alarge number of functions. Each of theseis given a
name by the programmer and they refer to each other as the program runs. C
regards the name "main" asa specia case and will run this function first. If you
forget to have a main function, or mistype the name, the compiler will give you an
error.

(void)

Thisisapair of brackets enclosing void. This may sound stupid, but actually
tells the compiler that the function main has no parameters. A parameter to a
function gives the function something to work on. When you define a function
you can tell C that it works on one or more things, for example sin(x) could
work on afloating point value of angle x. Wewill cover functionsin very great
detail later in this course.

{

Thisisabrace. Asthe name implies, braces come in packs of two, i.e. for every
open brace there must be a matching close. Braces allow me to lump pieces of
program together. Such alump of program is often called a block. A block can
contain the declaration of variable used within it, followed by a sequence of
program statements which are executed in order. In this case the braces enclose
the working parts of the function main.

When the compiler sees the matching close brace at the end it knows that it has
reached the end of the function and can look for another (if any). The effects of
an un-paired brace areinvariably fatal....

float

Our program needs to remember certain values asit runs. Notably it will read
in values for the width and height of the windows and then cal culate and print
values for the glass area and wood length. C calls the place where values are
put variables. At the beginning of any block you can tell C that you want to
reserve some space to hold some data values. Each item you can hold a
particular kind of value. Essentially, C can handle three types of data, floating
point numbers, integer number and characters (i.e. letters, digits and
punctuation).

Y ou declare some variables of a particular type by giving the type of the data,
followed by alist of the names you want the variables to have. We will 1ook at
the precise rules which apply when you invent a variable name in more detail
later, for now you can say that the variable must start with a letter and from
then on only contain letters, numbers and the _ character.

height, width, area, wood_length

Thisisalist. A list of itemsin C is separated by the, character. In thiscaseit is
alist of variable names. Once the compiler has seen the word float (see above)
it expecting to see the name of at least one variable which isto be created. The
compiler works its way down the list, creating boxes which can hold floating
point values and giving them the appropriate names. From this point on we can

A First C Program ? 13

refer to the above names, and the compiler will know that we are using that
particular variable.

The semicolon marks the end of the list of variable names, and also the end of

that declaration statement. All statementsin C programs are separated by the ;
character, this helpsto keep the compiler on the right track.

The; character is actually very important. It tells the compiler where a given
statement ends. If the compiler does not find one of these where it expectsto see
oneit will produce an error. Y ou can equate these characters with the sprocket
holesin film, they keep everything synchronised.

scanf

If you have been used to other programming languages you might expect that
the printing and reading functions are part of the language. In C thisis not the
case, instead they are defined as standard functions which are part of the
language specification, but not part of the language itself. Any decent book on
C must have a big section on how to use the standard functions and what they
are. The standard input/output library contains a number of functions for
formatted data transfer, the two we are going to use are scanf (scan formatted)
and printf (print formatted).

A parameter is something for Thislineisacall to the function scanf. The compiler knows that thisis a function

a function to work on. call by thefact that it isfollowed by a parameter list. (see later) What the compiler
does at this point is parcel up the parameters you have given and then call scanf,
passing the parameter information on. This function is expecting a particular
sequence and type of parameters.

The compiler knows what scanf looks like and the kind of information scanf
uses is expecting because it has already seen thefile stdio.h, which iswhere
this function is defined. The compiler can now check that the way we have used
scanf agrees with the definition. This allows valuable checking to be carried
out. If the compiler had not seen this function defined before it would simply
guess what it was supposed to do and probably produce a program which would
not work properly.

(

This marks the start of the list of parametersto the scanf function. A

parameter is something which a function operates on. All functions must have a
parameter list, if they have no parametersthelist is empty. Note that the
parameters you give when you call a function must agree in number and type
with those that the function expects, otherwise unpredictable things will

happen. The system file stdio.h contains a description of what scanf should
be given to work on. If what you supply does not agree with this the compiler
will generate an error for you.

n %fll ,

Thisisthe set of parametersto the call of scanf. scanf is short for scan
formatted. The function is controlled by the format string, which isthefirst
parameter to the function. The second and successive parameters are addresses
into which scanf putsthe valuesit has been told to fetch.

A First C Program ? 14

The" character definesthe
limits of the string.

In C astring is given as a sequence of charactersenclosed in " characters. Y ou will
meet the concept of delimitersregularly in C. A delimiter isa particular character
which isto be used to define the limits of something. C uses different delimitersin
different places, the" character is used to delimit a string of text. When the
compiler seesthefirst " it recognises that everything up until thenext " isa
sequence of characters which we wish to use. It therefore just assembles the string
until it finds another ". The string must al appear on the same line, otherwise you
will get an error.

The scanf function has been told to look out for certain charactersin the
format string and treat them as special. Such a special character is %. The %
character tells scanf that we are giving the format of a number which isto be
processed. The letter after the % character tells scanf what kind of valueis
being fetched, f means floating point. This command will cause scanf to look
for afloating point number on theinput. If it finds oneit isto put the valuein
the address given as the next parameter.

&height

In C afunction cannot change the value of a parameter which is supplied to it.
Thisis quite a departure from other languages, which let you do this. It does
make life more complicated, when you want your function to be able to change
the value of something. The way that you get the effect is by cheating. Instead

of passing scanf the variable height we have instead supplied &height. The &
is very important. When the compiler seesthe & it regards this as an instruction
to create a pointer to the given variable, and then pass this pointer to scanf.
This means that when scanf runsit is given a a pointer to wheretheresult isto
be placed, which is OK.

);

The) character marks the end of thelist of parametersto scanf and the ; then
end of this statement.

scanf ("%f", &width) ;

The function of thislineisidentical to the one above, except that the result is
placed into the variable called width.

area = 2 * height * width ;

Thisisan assignment. The assignments are the bread and butter of
programming. A good proportion of your programswill beinstructionsto
assign new values to variables, as the various results are cal cul ated.

C uses the = character to make assignments happen. Thefirst part of this
statement is the name of a previoudy defined variable. Thisis followed by the =
character which | call the gozzinta. | call it that because the value on the right
gozzinta (goesinto) the variable on the left. When this program runs the
expression isworked out and then the result is placed in the specified variable.
In this case the expression works out the total amount of glass needed. This
result isthen placed in the area variable.

A First C Program ? 15

When | write programs | use
brackets even when the
compiler does not need them.
This makes the program
Clearer.

wood_length =2 * (height + width) * 3.25;

Thisisan expression much like above, thistimeit isimportant that you notice the
use of parenthesis to modify the order in which values are calculated in the
expression. Normally C will work out expressionsin the way you would expect, i.e.
all multiplication and division will be done first, followed by addition and
subtraction. In the above expression | wanted to do some partsfirst, so | did what
you would do in mathematics, | put brackets around the parts to be done first.

printf

The printf function isthe opposite of scanf. It takes text and values from
within the program and sends it out onto the screen. Just likescanf itis
common to all versions of C and just like scanf it is described in the system
filestdio.h.

Thefirst parameter to printf isthe format string, which containstext, value
descriptions and formatting instructions.

("The area of glass needed is : %f metres. \n",

Thisisanother format string. The text in this message will appear asit is given,
although the delimiters will not be printed. Like scanf the % tells printf that a
value description follows, the f meaning that a floating point valueisto be
printed. You can get quite clever with place markers, using them to specify
exactly how many spacesto fill with the value and, with real numbers, how
many places after the decimal point to print, for example :

Format Command

%d | want you to print the value of a signed, decimal
integer

%c | want you to print the character which respondsto this

value (more on characters alittle later)

%of | want you to print the value of a signed, decimal,
floating point number. | want to see the result with a
floating decimal point.

%5d | want you to print the decimal integer in five
character positions, right justified.

%6.2f | want you to print the decimal floating point number
in six character positions, right justified and to an
accuracy of two decimal places.

Therest of thetext is quite straightforward, until we get to the\ character,
which marks a formatting instruction. These instructions alow you to tell
printf to do things like take a new line, move the cursor to the start of the line
and etc. The\ isfollowed by a single character which identifies the required
function. In the case of our program we want to take a new line at that point,
and that iswhat n does. Note that unlike some languages, print statements do
not automatically take a new line. This means that the programmer hasto do
more, but does make for greater flexibility.

A First C Program ? 16

area);

The next piece of information that printf needsisthe name of the variable to
be printed. Note that in this case we do not need to specify the address of the
variable, we are just sending its value into the function so that it can be printed
out.

printf (" The length of wood needed is : %f
feet.\n", wood_length) ;

Thislineisvery similar to the one above it, except that the message and the
variable printed are different.

}

This closing brace marks the end of the program. The compiler will now expect
to seethe end of thefile or the start of another function.. If it does not, it means
that you have got an unmatched brace somewhere in the program, which will
almost certainly mean your program will not work properly. Not all compilers
notice this!

Punctuation

That marks the end of our program. One of the things that you will have
noticed is that thereisan awful lot of punctuation in there. Thisisvital and
must be supplied exactly as C wantsit, otherwise you will get what iscalled a
compilation error. This simply indicates that the compiler istoo stupid to make
sense of what you have given it!

You will quickly get used to hunting for and spotting compilation errors, one of
the things you will find is that the compiler does not always detect the error
where it takes place, consider the effect of missing out a"(" character. Note that
just because the compiler reckons your program is OK is no guarantee of it
doing what you want!

Anocther thing to remember isthat the layout of the program does not bother the
compiler, the following isjust asvalid

#include <stdio.h>

void main (){ float height, width, area, wood_length ;

scanf (" %f",

&height) ; scanf ("%f", &width) ; area = 2 * height * width ;
wood_length = 2 * (height + width) * 3.25 ; printf (

"The area of glass needed is : %f metr es.\n"

, area) ; printf (

"The length of wood needed is : %f feet. \n"

, wood_length) ;}

- although if anyone writes a program which islaid out this way they will get a
smart rap on the knuckles from me!

The grammar of programs is something you will pick up aswe look at more
and more of them....

A First C Program ? 17

Variables

Variables and Data

Programs operate on data. A programming language must give you a way of
storing the data you are processing, otherwiseit is useless. What the data
actually means is something that you as programmer decide (see above
digression on data).

Types of Variables

When you are writing a
specification you should
worry about the precision to
which values are to be held.
Too much accuracy may slow
the machine down - too little
may result in the wrong
values being used.

Basically there are two types of data:

? Nice chunky individual values, for example the number of sheep
in afield, teeth on a cog, applesin a basket.

? Nasty real world type things, for example the current temperature,
the length of a piece of string, the speed of a car.

In the first case we can hold the value exactly; you always have an exact
number of these items, they areintegral.

In the second case we can never hold what we are looking at exactly. Even if you
measure a piece of string to 100 decimal placesit is still not going to give you its
exact length - you could always get the value more accurately. These arereal. A
computer isdigital, i.e. it operates entirely on patterns of bits which can be regarded
as numbers. Because we know that it works in terms of ons and offs it has problems
holding real values. To handle real values the computer actually stores them to a
limited accuracy, which we hope is adequate (and usually is).

This means that when we want to store something we have to tell the computer
whether it isan integer or areal. In fact it is useful to have several types of
data.

Declaration

Robs' Arbitrary Sandard For
Coloured Boxes!

You tell C about something you want to store by declaring it. The declaration also
identifies the type of the thing we want to store. Think of thisas C creating a box of
aparticular size, specifically designed to hold items of the given type. We identify
what type of data a particular box can hold by making it a certain colour, according
to RASFCB integer boxes are coloured red and real (or floating point) boxes are
coloured green.

Variables ? 18

Note that we can go one
further negative than
positive. Thisis because the
numbers are stored using "2's
complement"” noation.

Note that C is often called weakly typed. This does not mean that you do not
press the keys very hard (ho ho), what it meansisthat C does not fuss about
what you put in each box. If you have a red box (of type integer), and then ask
C to put agreen value into it (of type real or floating point), C will not
complain that what you want to do is meaningless, it will just do it. Other
languages, for example PASCAL, get al hot under the collar when you try to
do this, they are called strongly typed. Weakly typed languages let you do
exactly what you want so, provided you know what you are doing, everything
will work out OK.

We will consider just three types for the moment, there are others available but
you can get by with these for now:

int variables

A type of box which can hold only integer values, i.e. no fractional part. The precise
range of integers which are supported varies from one version of C to ancther, in
the version we are using it goes from -32768 to +32767

float variables

A type of box which can hold areal (i.e. floating point) number. These are held
to limited precision, again the precision and range you get varies from one
version of C to another, in the version of C we are using it goes from 3.4E-38
to 3.4E+38.

char variables

A type of box which can hold a single character. We have already come across
characters when we looked at filenames and the like. A character iswhat you
get when you press a key on a keyboard.

Missing Types

If you are used to other languages you might think that there are some storage
types missing, for example there is no way to store strings of characters. In C,
unlike BASIC, you have to manage the storage of strings yoursdlf - however
there are alarge number of built in facilities to make like easier. We will come
to these later.

Another missing type isthat used to storelogical values, i.e. either TRUE or
FALSE. C does not provide this facility, but uses the convention throughout
that O means false and any other value meanstrue. There are operators that can
be used to provide logical combinationsin C, but they will work on any non-
real datatype.

Variable Declaration

Before you can use a particular box you haveto tell the compiler about it. C will
not just create boxes for you; it has to know the name of the box and what you
aregoing to put intoit. You tell C about a box by declaring it.

When the compiler is given a declaration it says something along the lines of:

Variables ? 19

Here is the name of something which we want to store. | will create a box of the
type requested, paint it the correct colour and write the name on it. Later on |
will put thingsin the box and get things out of it. | will put the box on a shelf
out of the way for now.

Such abox is often called a variable. All languages support different types of
variables, all have types equivalent to the C ones.

Remember that all we have is a box. The box isnot empty at the moment, but
thereis nothing of interest in it; the contents are what we call undefined. If you
use the contents of an undefined variable you can look forward to your program
doing something different each time you run it!

C paints the name on the box using a stencil. There are only afew stencils
available, so the characters that you can use to name a variable are limited.
Also, because of the design of the stencils themselves, there are some rules
about how the names may be formed, namely:

? All variable names must start with a letter.

? After theletter you can have either letters or numbers or the
underscore" " character.

The length of the name allowed depends on the version of C you are using. You
can use amazingly long namesin any version of C, the important thing to
remember isthat only a certain number of characters are looked at, i.e.

very_long_and_impressive_C_variable_called_fred
and

very_long_amd_impressive_C_variable_called_jim
- would probably be regarded as the samein most versions of C.

Upper and lower case letters are different, i.e. Fred and fred are different
variables.

Here are a few example declarations, one of which are not valid (seeif you can
guess which one and why) :

int fred ;
float jim ;
char 29yesitsme ;

One of the golden rules of programming, along with "always use the keyboard
with the keys uppermost” is:

Always give your variables meaningful names.

According to the Mills and Boon romances that | have read, the best
relationships are meaningful ones.

Giving Values to

Variables

Once we have got ourselves a variable we now need to know how to put
something into it, and get the value out. C does this by means of an assignment.
There are two parts to an assignment, the thing you want to assign and the
place you want to put it, for example consider the following:

Variables ? 20

void main (void)

{
int first, second, third ;
first=1;
second =2;
second = second + first ;
}

Thefirst part of the program should be pretty familiar by now. Within the
main function we have declared three variables, first, second and third.
These are each of integer type.

The last three statements are the ones which actually do the work. These are
assignment statements. An assignment gives a value to a specified variable,
which must be of a sensible type (note that you must be sensible about this
because the compiler, as we already know, does not know or care what you are
doing). The value which isassigned is an expression. The equalsin the middle
is there mainly do confuse us, it does not mean equalsin the numeric sense, |
like to think of it as a gozzinta (see above). Gozzintas take the result on the
right hand side of the assignment and drop it into the box on the left, which
means that:

2=second +1;

isa piece of programming naughtiness which would cause all manner of nasty
errors to appear.

Expressions

An expression is something which returns aresult. We can then use the result
aswelikein our program. Expressions can be as simple asa single value and
as complex as alarge calculation. They are made up of two things, operators
and operands.

Operands

Operands are things the operators work on; They are usually constant values or
the names of variables. In the program abovefirst, second, third and 2 are
all operands.

Operators

Operators are the things which do the work; They specify the operation to be
performed on the operands. Most operators work on two operands, one each
side. In the program above + isthe only operator.

Here are a few example expressions:

2+3%4
-1+3
(2+3)*4

These expressions are worked out (evaluated) by C moving from left to right,
just as you would yoursdlf. Again, just asin traditional maths all the
multiplication and division is performed first in an expression, followed by the
addition and subtraction.

C does this by giving each operator a priority. When C works out an expression
it looks along it for all the operators with the highest priority and does them
firgt. It then looks for the next ones down and so on until the final result is
obtained. Note that this means that the first expression above will therefore
return 14 and not 20.

Variables ? 21

If you want to force the order in which things are worked out you can put
brackets around the things you want done first, asin the final example. You can
put brackets inside brackets if you want, provided you make sure that you have
as many open ones as close ones. Being asimple soul | tend to make things
very clear by putting brackets around everything.

It is probably not worth getting too worked up about this expression evaluation
as posh people call it, generally speaking things tend to be worked out how you
would expect them.

For completeness hereisalist of all operators, what they do and their
precedence (priority). | am listing the operators with the highest priority first.

op. |use

- unary minus, the minusthat C finds in negative numbers, e.g. -1.
Unary means applying to only oneitem.

* multiplication, note the use of the * rather than the more
mathematically correct but confusing x.

/ division, because of the difficulty of drawing one number above
another on a screen we use this character instead

+ addition, no problems here.

- subtraction. Note that we use exactly the same character asfor unary
minus.

Thisisnot acompletelist of al the operators available, but it will do for now.
Because these operators work on numbers they are often called the numeric
operators.

Types of Data in Expressions

When C performs an operator, it makes a guess as to the type of the result that
isto be produced. Essentiadly, if the two operands are integer, it saysthat the
result should be integer, if the two are floating point, it says that the result
should be floating point. This can lead to problems, consider the following :

1/2
1/2.0

Y ou might think that these would give the same result. Not so. The compiler
thinks that the first expression, which involves only integers, should give an
integer result. It therefore would calculate thisto be the integer value O (the
fractional part is always truncated). The second expression, because it involves
a floating point value would however be evaluated to give a floating point
result, the correct answer of 0.5

Casting

We can force C to regard a value as being of a certain type by the use of casting.
A cast takes the form of an additional instruction to the compiler to forceit
regard avaluein a particular way. You cast a value by putting the type you
want to see there in brackets before it. For example :

Variables ? 22

| do not think of thisasa
failing in C. It givesyou
great flexibility, at the cost of
assuming you know what you
aredoing....

#include <stdio.h>
void main (void)

{
inti=3,j=2; float fraction ;
fraction = (float) i / (float) | ;
printf ("fraction : %f\n", fraction) ;
}

The (float) part of the above tells the compiler to regard the valuesin the
integer variables as floating point ones, so that we get 1.5 printed out rather
than 1.

When you cast, which you need to do occasionally, remember that casting does
not affect the actual value, just how C regards the number. As we saw above,
each type of variable has a particular range of possible values, and the range of
floating point valuesis much greater than that for integers. This meansthat if
you do thingslike :

inti;

i = (int) 12345678.999 ;
- the cast is doomed to fail. The value which gets placed in i will be invalid.
Nowherein C does the language check for mistakes like this. It is up to you when

you write your program to make sure that you never exceed the range of the data
types you are using - the program will not notice but the user certainly will!

Getting Values into the Program

For more about pointers, see
the chapter about Functions.

We have used the printf (print-formatted) standard input/output procedure
from stdio.h to do the output, what we need is an equivalent procedure to do the
input. C has got one of these, it is called scanf (scan-formatted). However,
before we can turn it loose we have a little problem to solve; Where does scanf
put the value that it fetches. "That is easy" you say, ssmply give it the name of
the variable and scanf will know whereto go. Wrong! scanf isvery stupid. It
cannot understand the names of variables. Why should it? All it was created for
isto take something from one place (the keyboard) and put it somewhere ese (a
location). scanf does not want to know what the variableis called, all it needs
to know iswhere the variable lives.

When we talk about C variables we mean a box which the compiler creates for
us, with a name nicely painted on it. The compiler makes a box like this and
then putsit on a shelf somewhere safe. The compiler then knows that when we
say "i" we really mean the box with i written on it. scanf issimply afunction
that we call to fetch avalue and stick it somewhere else, another kind of
removal man. It needs to be told which box to put the result in. C callsreferring

to athing by its location rather than its name as pointing.

Nice children have been brought up knowing that it is rude to point. In C things
are rather different, you have to point to be able to do anything useful. (I am
sure nanny would understand).

When we want scanf to fetch something for us we have to give it a pointer. You
can regard a pointer as atag on the end of a piece of rope. The rope istied to one of
our boxes. All scanf hasto do is follow the piece of rope to a box and then put the
value into that box.

You tell the C compiler to generate a pointer to a particular variable by putting
an ampersand " &" in front of the variable name, i.e.

X means the value of the variable x

Variables ? 23

&X means a pointer to the box where x iskept, i.e. the address of x.

scanf looks very like printf, in that it isaformat string followed by alist of
items, but in this case the items pointersto variables, rather than values, for
example:

scanf ("%d %d %d", &i, &j, &K) ;

The more adventurous amongst you may be wondering what happensif we
leave off the ampersands by mistake. This can lead to one of two things:

1. Thecompiler noticing that you have been a haughty programmer
and taking you behind the bike sheds for a meaningful discussion.

2. scanf taking the value which it gets and stuffing it into a spurious
chunk of memory, with the consequent and hilarious total failure
of program and possibly computer.

A very big chunk of C involves address and pointer juggling. | make no
apologiesfor this, it is one of the things that makes C the wonderful, fun
loving, language that it is. However it can also be alittle hard on the grey
matter. Just keep in mind that only the C compiler can handle sticking values
into variables. Everything el se does not know the name, and can only talk in
terms of following pointers to boxes.

Writing a Program

Comments

When the C compiler seesthe "/*" sequence which meansthe start of a
comment it says:

Aha! Hereis a piece of information for greater minds than mine to ponder. |
will ignore everything following until | see a */ which closes the comment.

Be generous with your comments. They help to make your program much easier
to understand. Y ou will be very surprised to find that you quickly forget how
you got your program to work. Y ou can also use comments to keep people
informed of the particular version of the program, when it was last modified
and why, and the name of the programmer who wroteit - if you dare!

Program Flow

The program above is very simple, it runs straight through from the first
statement to the last, and then stops. Often you will come across situations
where your program must change what it does according to the data which is
given toit. Basically there are three types of program flow :

Writing a Program ? 24

1. straight line
2. chosen depending on a given condition
3. repeated according to a given condition

Every program ever written is composed of the three elements above, and very
little else! You can use thisto good effect when designing an overall view of
how your program is going to work. At the moment we have only considered
programs which run in a straight line and then stop. The path which a program
follows is sometimes called its "thread of execution". When you call afunction
the thread of execution istransferred into the function until it is complete.

Conditional Execution - if

The program above is nice, in fact our customer will probably be quite pleased
with it. However, it is not perfect. The problem is not with the program, but
with the user.

If you give the program a window width of -1 it goes ahead and works out a
stupid result. Our program does not have any checking for invalid widths and
heights. The user might have grounds for complaint if the program failsto
recognise that he has given a stupid value, in fact a number of cases are
currently being fought in the United States courts where a program has failed to
recogniseinvalid data, produced garbage and caused a lot of damage.

What we want to do is notice the really stupid replies and tell the user that he
has done something dubious. In our program specification, which we give the
customer, we have said something like:

The program will rgject window dimensions outside the following ranges:

width less than 0.5 metres
width greater than 5.0 metres
height less than 0.75 metres
height greater than 3.0 metres

This means that we have done al we can; If the program gets 1 rather than 10
for the width then that is the users' problem, the important thing from our point
of view is that the above specification stops us from being sued!

In order to allow usto do this the program must notice naughty values and
reject them. To do this we need can use the construction:

if (condition)

statement or block we do if the condition is true
else

statement or block we do if the condition is false

The condition determines what happensin the program. So what do we mean
by a condition? C is very simple minded about this, essentially it says that any
condition which is non-zero istrue, any condition which iszeroisfalse. A
condition is therefore really something which returns a number, for example:

if (1)
printf ("hello mum");

- isvalid, although rather useless as the condition is always true, so "hello
mum™" is always printed (note that we |eft the el se portion off - thisis OK
because it is optional).

Writing a Program ? 25

If you want to compare
floating point values subtract
them and see if the difference
isvery small.

Conditions and Relational Operators

To make conditions work for us we need a set of additional relational operators
which we can use to make choices. Relational operators work on operands, just
like numeric ones. However any expression involving them can only produce
two values, 0 or 1. Zeroif the expression is not true, oneif it is. Relational
operators available are as follows:

equals. If the left hand side and the right hand side are equal the expression has
thevalue 1. If they are not equal the valueisO.

4 ==

- would return 0, i.e. false. Note that it is not meaningful to compare floating
point valuesin this way. Because of the fact that they are held to limited
precision you might find that conditions fail when they should not for example
the following equation :

x=3.0%(1.0/3.0);

- may well result in x containing 0.99999999, which would mean that :
(x==1.0)

- would be false - even though mathematically the test should return true.

not equal. The reverse of equal. If they are not equal the expression has the
value 1, if they are equal it hasthevalue 0. Again, thistest is not suitable for
use with floating point numbers.

<

lessthan. If the item on the left isless than the one on the right the value of the
expression is 1. If theleft hand value is larger than or equal to the right hand
onethe expression gives 0. It is quite valid to compare floating point numbers
in this way.

>

greater than. If the expression on the left is greater than the one on the right the
result is 1. If the expression on the l&ft isless than or equal to the one on the
right theresult isO.

<=

less than or equal to. If the expression on the left isless than or equal to the one
on theright you get 1, otherwise you get 0.

>=

greater than or equal to. If the value on the l&ft is greater than or equal to the
one on theright you get 1, otherwiseit is 0.

Writing a Program ? 26

De Morgans theoremisthe
basis of this.

not. This can be used to invert a particular value or expression, for example you
can say |1, which is 0, or you could say: !(x=y) - which means the same as
(x!=y). You use not when you want to invert the sense of an expression.

Combining Logical Operators

Sometimes we want to combine logical expressions, to make more complicated
choices, for example to test for a window width being valid we have to test that
it is greater than the minimum and less than the maximum. C provides
additional operatorsto combinelogical values:

&&

and. If the expressions each side of the && aretrue theresult of the && istrue.
If one of them isfalsethe result isfalse, for example

(width > 0.5) && (width < 5.0))

- thiswould be trueif the width was valid according to our above description.

or. If either of the expressions each side of the || are true the result of the whole
expression istrue. The expression isonly false if both expressions are false, for
example:

(width <= 0.5) | (width >= 5.0))

- thiswould be trueif the width was invalid according to our above description.
Note that if we put an or in we have to also flip the conditional operators around as
well.

Using these operatorsin conjunction with the if statement we can make
decisions and change what our program will do in response to the data we get.

Lumping Code Together

We have decided that if the user gives a value outside our allowed range an
error is generated and the value is then set to the appropriate maximum or
minimum. To do this we have to do two statements which are selected on a
particular condition, oneto print out the message and the other to perform an
assignment. You can do this by using the { and } characters. A number of
statements lumped together between { and } charactersisregarded asasingle
statement, so we do the following:

if (width >5.0) {
printf ("Width too big, using maximum \n") ;
width =5.0;

}

The two statements are now a block, which is performed only if width is greater
than 5.0. You can lump many hundreds of statements together in this way, the
compiler does not mind. Y ou can also put such blocks of code inside other
blocks, thisis called nesting.

The number of { and } characters must agree in your program, otherwise you
will get strange and incomprehensible errors when the compiler hits the end of
thefile in the middlie of ablock or reaches the end of your program half way
down your file!

Writing a Program ? 27

/* Double Glazing 2 */

I make things much easier to understand by indenting a particular block by a
number of spaces, i.e. each time | open a block with the { character | move my
left margin in alittleway. | can then see at a glance whereabouts | am in the
levels at any time.

Magic Numbers and #define

A magic number is avalue with a special meaning. It will never be changed
within the program, it isinstead a constant which is used within it. When |
write my glazing program | will include some magic numbers which give the
maximum and minimum values for heights and widths. | could just use the
values 0.5, 5.0, 0.75 and 3.0 - but these are not packed with meaning and
make the program hard to change. If, for some reason, my maximum glass size
becomes 4.5 metres | have to look all through the program and change only the
appropriate values. | do not like the idea of "magic numbers' in programs, what
| would liketo do is replace each number with something a bit more
meaningful.

We can do this by using a part of the compiler called the C pre-processor. The
pre-processor sits between your program and the compiler. It can act asakind
of filter, responding to directivesin your program, and doing things to the text
before the compiler seesit. We arejust going to ook at the one directive at the
moment, #define:

#define Pl 3.141592654

Whenever the pre-processor sees Pl it sends the compiler 3.141592654. This
means that you can do things like:

circ=rad *2*Pl;
The item which follows the #define directive should be a sequence of
characters. Y ou then have a space, followed by another sequence of characters.
Neither of the two sequences are allowed to contains spaces, this would get the

pre-processor confused. Anywhere you use a magic number you should use a
definition of thisform, for example:

#define MAX_WIDTH 5.0

This makes your programs much easier to read, and also much easier to change.

Thereisa C convention that you always give the symbol you are defining in
CAPITAL LETTERS. Thisis so that when you read your program you can tell
which things have been defined.

Note that the #define directiveis not intelligent, and you can therefore stop
your program from working by getting your definition wrong. Consider the
effect of:

#define MAX_WIDTH *this*will*cause*an*explosion!

There are loads more pre-processor directives which you can use, the other one
which we have already seen is#include.

We can therefore modify our double glazing program as follows:

/* This program calculates glass area and wood */
/* required by a double glazing salesman. */

/* Version 22.15 revision level 1.23 */

/* Rob Miles - University of Hull - 13/11/89 */

#include <stdio.h>

Writing a Program ? 28

#define MAX_WIDTH 5.0
#define MIN_WIDTH 0.5
#define MAX_HEIGHT 3.0
#define MIN_HEIGHT 0.75

void main ()

{

float width, height, glassarea, woodlength ;

printf ("Give the width of the window : ") ;

scanf ("%f", &width) ;

if (width < MIN_WIDTH) {
printf ("Width is too small.\n\n") ;
width = MIN_WIDTH ;

}

if (width > MAX_WIDTH) {
printf ("Width is too large.\n\n") ;
width = MAX_WIDTH ;

}

scanf ("%f", &height) ;

if (height < MIN_HEIGHT) {
printf ("Height is too small. \n\n") ;
height = MIN_HEIGHT ;

}

if (height > MAX_HEIGHT) {
printf ("Height is too large.\n\n") ;
height = MAX_HEIGHT ;

}

woodlength = 2 * (width + height) ;
glassarea = width * height ;
printf ("Glass : %f Wood : %f\n\n", woodlength, glassarea) ;

This program fulfills our requirements. It will not use values incompatible with
our specification. However | would till not call it perfect. If our salesman gives
a bad height the program stops and needs to be re-run, with the height having
to be entered again.

What we would really like is away that we can repeatedly fetch values for the
width and height until we get one which fits.

C alows usto do this by providing alooping constructions.

Loops

Conditional statements allow you to do something if a given condition istrue.
However often you want to repeat something while a particular condition is
true, or a given number of times.

C hasthree ways of doing this, depending on precisely what you are trying to
do. Note that we get three methods not because we need three but because they
make life easier when you write the program (a bit like an attachment to our
chainsaw to allow it to perform a particular task more easily). Most of the skill
of programming involves picking the right tool or attachment to do thejobin
hand. (therest isfinding out why the tool didn't do what you expected it tol).

In the case of our program we want to repeatedly get numbersin until while we
are getting duff ones, i.e. giving a proper number should cause our [oop to stop.

Writing a Program ? 29

This meansthat if we get the number correctly first time the loop will execute
just once. You might think that | have pulled afast one here, all | have doneis
change:

Get values until you see one which is OK
into
Get values while they are not OK

Part of the art of programming is changing the way that you think about the
problem to suit the way that the programming language can be told to solveit.
Further details can be found in Zen and the Art of 68000 Assembler from
Psychic Press at £150.

do -- while loop

In the case of our little C program we use the do -- while construction which
looks like this:

do
statement or block
while (condition) ;

This allows usto repeat a chunk of code until the condition at the end istrue.
Note that the test is performed after the statement or block, i.e. even if the test
is bound to fail the statement is performed once.

A condition in this context is exactly the same as the condition in an if
statement, raising the intriguing possibility of programs like:

#include <stdio.h>

void main ()
{
do
printf ("hello mum\n") ;
while (1) ;
}

Thisisaperfectly legal C program. How long it will run for is an interesting
guestion, the answer contains elements of human psychology, energy futures
and cosmology, i.e. it will run until:

1. You get bored with it.
2. Your eectricity runs out.
3. Theuniverse implodes.

Thisisachainsaw situation, not a powerful chainsaw situation. Just asit is
possible with any old chainsaw to cut off your leg if you try really hard soit is
possible to use any programming language to write a program which will never
stop. It reminds me of my favourite shampoo instructions:

Wet Your Hair

Add Shampoo and Rub vigorously.
Rinse with warm water.

Repest.

PwWDdPE

| wonder how many people there are out there still washing their hair at the
moment.

Writing a Program ? 30

The variable which controls
thingsis often called the
control variable, and is
usually given the namei.

while loop

Sometimes you want to decide whether or not to repeat the loop before you
perform it. If you think about how the loop above works the test is done after
the code to be repeated has been performed once. For our program thisis
exactly what we want, we need to ask for a value before we can decide whether
or not itisvalid. In order to be asflexible as possible C gives us another form
of the loop construction which allows usto do the test first:

while (condition)
statement or block

Note that C makes an attempt to reduce the number of keys you need to pressto
run the program by leaving out the word do. (if you put the do in the compiler
will take great delight in giving you an error message - but you had already
guessed that of coursel).

for loop

Often you will want to repeat something a given number of times. The loop
constructions we have given can be used to do this quite easily:

#include <stdio.h>

void main ()
{
inti;
i=1;
while (i <11){
printf ("hello\n") ;
i=i+1;
}
}

This useless program prints out hello 10 times. It doesthis by using a variable to
control theloop. The variableis given an initial value (1) and then tested each time
we go around the loop. The control variable isthen increased for each pass through
the statements. Eventually it will reach 11, at which point the loop terminates and
our program stops.

C provides a construction to allow you to set up aloop of thisform all in one:

for (setup ; finish test ; update) {
things we want to do a given
number of times

}

We could use this to re-write the above program as:

#include <stdio.h>
void main ()
{ . .
inti;
for (i=0;i!=11;i=i+1){
printf ("hello\n") ;
}

}

The setup puts a value into the control variable which it will start with. The test
isa condition which must be true for the for -- loop to continue. The update is
the statement which is performed to update the control variable at the end of
each loop. Note that the three elements are separated by semicolons. The
preci se sequence of eventsis as follows:

Writing a Program ? 31

1. Put the setup value into the control variable.

2. Test to seeif we have finished the loop yet and exit to the
statement after the for loop if we have.

3. Perform the statements to be repeated.

4. Perform the update.

5. Repeat from step 2.

Writing aloop in thisway is quicker and simpler than using a form of while
because it keeps all the elements of the loop in one place, instead of leaving
them spread about the program. This means that you are less likely forget to do
something like give the control variable an initial value, or update it.

If you are so stupid as to mess around with the value of the control variablein
the loop you can expect your program to do stupid things, i.e. if you put i back
to 0 within theloop it will run forever.....

Breaking Out of Loops

Sometimes you may want to escape from aloop whilst you are in the middle of
it, i.e. your program may decide that thereis no need or point to go on and
wishes to tunnel out of the loop and continue the program from the statement
after it.

You can do thiswith the break statement. Thisisacommand to leap out of the
loop immediately. Y our program would usually make some form of decision to
quit in thisway. | find it most useful so that | can provide a get the hell out of
here option in the middle of something, for example in the following program
snippet the variable aborted, normally O becomes 1 when the loop has to be
abandoned and the variable runningOK, normally 1, becomes 0 when it is
timeto finish normally.

while (runningOK) {
complex stuff

if (aborted) {
break ;
}

more complex stuff

}

bit we get to if aborted becomes true

Note that we are using two variables as switches, they do not hold values as
such, they are actually used to represent states within the program asit runs.
Thisisa standard programming trick that you will find very useful.

Y ou can break out of any of the three kinds of loop. In every case the program
continues running at the statement after the last statement of the loop.

Going Back to the Top of a Loop

Every now and then you will want to go back to the top of aloop and do it all
again. This happens when you have gone as far down the statements as you
need to. C providesthe continue statement which says something along the
lines of:

Writing a Program ? 32

Please do not go any further down this time round the loop. Go back to the top
of the loop, do all the updating and stuff and go around if you are supposed to.

In the following program the variable Done_All_We_Need_This_Time is
set when we have gone as far down the loop as we need to.

for (item =1 ; item < Total_ltems ; item=item+1) {

item processing stuff

if (Done_All_We_Need_This_Time) {
continue ;

additional item processing stuff

}

The continue causes the program to re-run the loop with the next value of
itemif it isOK to do so. You can regard it asamoveto step 2 in the list above.

More Complicated Decisions

We can now think about using aloop to test for avalid width or height.
Essentially we want to keep asking the user for a value until we get one which
isOK; i.e. if you get avalue which islarger than the maximum or smaller than
the minimum ask for another.

To do this we have to combine two tests to seeif the value is OK. Our loop
should continue to run if:

width > MAX_WIDTH

or
width < MIN_WIDTH

To perform thistest we use one of thelogical operators described above to write
a condition which will betrueif thewidth isinvalid:

((width < MIN_WIDTH) || (width > MAX_WIDTH))

- note the profuse use of brackets. You must put thesein.

Complete Glazing Program

Thisisacomplete solution to the glazing problem. It uses al thetricks
mentioned above, plus a few which are covered below.

/* Complete Double Glazing Program */
/* Rob Miles Nov. 1990 */

#include <stdio.h>

/* Define our window size range */
#define MAX_HEIGHT 3.0

#define MAX_WIDTH 5.0

#define MIN_HEIGHT 0.75
#define MIN_WIDTH 0.5

/* Define a few costs */
#define COST_TO_MAKE 2.00
#define WOOD_COST 2.00

Writing a Program ? 33

#define GLASS_COST 3.00
#define MARKUP_FACTOR 2.25

/* Define the maximum number of windows on our house */
#define MAX_WINDOWS 10

/* Program variables : */

/* width - width of current window */

/* height - height of current window */

/* window_cost - cost to make the window */

/*window_sell - amount we sell the window for *

/* house_cost - cost to do the whole house */

/* house_sell - amount we sell the house job for */

float width, height, window_cost, window_sell, house_cost, house_sell ;

/* no_of_windows - number of windows in the house *
/*window_count - counter for current window *
int no_of windows, window_count ;

void main ()

{
printf ("Double Glazing House Calculator\n") ;
printf ("Rob Miles November 1990\n") ;

do {
printf ("Give the number of windows : ") ;
scanf ("%d", &no_of windows) ;
} while ((no_of_windows <= 0) || (no_of_windows > MAX_WINDOWS)) ;

house cost=0.0;
house sell =0.0;

for (window_count =1 ; window_count <= no_of windows ; window_count++) {
printf ("Window %d details.\n", window_count) ;
do {
printf (" enter the width : ") ;
scanf (" %f", &width) ;
} while ((width < MIN_WIDTH) || (width > MAX_WIDTH)) ;
do {
printf (" enter the height: ");
scanf (" %f", &height) ;
} while ((height > MIN_HEIGHT) || (height < MAX_HEIGHT)) ;
window_cost = WOOD_COST * 2 * (width + height) ;
window_sell = window_cost * MARKUP_FACTOR;
printf ("Window %d costs %.2f, sells for %.2f. \n\n",
window_count, window_cost, window_sell) ;
house_cost +=window_cost ;
house_sell +=window_sell ;
}
printf ("\nTotal cost to do all %d windows : %.2f.\n", no_of windows, house_cost);
printf ("\nTotal sale price for all %d windows : %.2f.\n", no_of windows, house_sell) ;

Operator Shorthand

So far we have looked at operators which appear in expressions and work on
two operands, e.g.

Writing a Program ? 34

window_count = window_count + 1

In this case the operator is+ and is operating on the variable window_count
and the value 1. The purpose of the above statement isto add 1 to the variable
window_count. However, it isarather long winded way of expressing this,
both in terms of what we have to type and what the computer will actually do
when it runs the program. C allows usto be more terseif we wish, theline:

window_count++

- would do the same thing. We can express oursdlves more succinctly and the
compiler can generate more efficient code because it now knows that what we
are doing is adding one to a particular variable. The ++ iscalled a unary
operator, because it works on just one operand. It causes the value in that
operand to be increased by one. Thereis a corresponding -- operator which can
be used to decrease (decrement) variables. Y ou can see examples of this
construction in the for loop definition in the example above.

The other shorthand which we use is when we add a particular value to a
variable. We could put :

house_cost =house_cost + window_cost

Thisis perfectly OK, but again is rather long winded. C has some additional
operators which allow us to shorten thisto:

house_cost +=window_cost

The += operator combines addition and the assignment, so that thevaluein
house_cost isincreased by window_cost. Some other shorthand operators
are

a+=b thevaluein aisreplaced atb.

a-=b thevaluein aisreplaced by a- b.
al=b thevaluein aisreplaced by a/ b.
a*=>n thevaluein aisreplaced by a* b.

There are other combination operators, | will leave you to find them!

Statements and Values

One of the really funky things about C isthat all statements return avalue,
which you can usein another statement if you like. Most of the time you will
ignore this value, which is OK, but sometimesit can be very useful, particularly
when we get around to deciding things (see later). In order to show how thisis
done, consider the following:

i =(=0);
Thisis perfectly legal (and perhaps even sensible) C. It has the effect of setting
both i and j to 0. An assignment statement always returns the value which is
being assigned (i.e. the bit on theright of the gozzinta). This value can then be
used as a value or operand. If you do this put brackets around the statement
which isworking as a value, this makes the whole thing much clearer for both
you and the compiler!

When you consider operators like ++ there is possible ambiguity, in that you do
not know if you get the value before or after the increment. C provides a way of
doing it either way, depending on which effect you want. Y ou determine
whether you want to see the value before or after the sum by the position of the

Writing a Program ? 35

Note that the way that a
number is printed does not
affect how it isstored in the
program, it just tells printf to
cut short the printing at a
particular point.

++

i++ means give me the value before the increment.
++i means give me the value after the increment.

Asan example:
inti=2,j;
j= 4+

- would make j equal to 3. The other special operators, += etc all return the
value after the operator has been performed.

One neat place to use this facility is when you are updating a value and testing
it at the same time, for exampleinstead of :
i=i-1;
if (i==0){
printf ("Finished\n") ;
}

you could put :

if(—-i==0){
printf ("Finished\n") ;
}

An important thing to noteis that not only does this facility make the program
shorter, and therefore help the programmer, but it also allows the compiler to
produce much faster programs. In thefirst instance the compiler would tend to
produce a larger and slower program, because it would treat the two statements
as separate. In the second case, because it knows that we are going to use the
value of the sum in an expression it might not have to fetch it again.

Thisiswhy people say that the C language is faster than some others; it allows
us to write more expressive programs which can be mapped more easily onto
the actual machine which will run them. The bad new is that this
expressiveness can also be used to write incomprehensible programs as far as
people are concerned. In thefinal analysis, | am happier if the program isa
little less efficient, but is easier for people to understand!

Neater Printing

If you have run any of the above programs you will by now have discovered that the
way in which numbers are printed |eaves much to be desired. Integers seem to come
out OK, but real numbers seem to have a particularly large number of decimal
places, which are not required for our program. Y ou can give the printf function
more information about how avalue is to be printed, so that the values that come
out look alot better. For any item you can give the number of character positions to
be used to print the number. In addition, for floating point values you can specify
the precision, i.e. how many decimal placesto print.

You tell printf what you want by putting values after the % but before the letter
which identifies the type of variable to be printed. The genera formis:

%width.precisiontype

Note that if you are printing integer types you do not need to give the point or
the precision value, just the width.

Here are some examples, with explanations:
Format Function

Writing a Program ? 36

%5d print the decimal integer in a space five characters wide. If the value
is smaller than five characters, pad out with extra spaces.

%6.2f print the floating point value in a space six characters wide, with
two decimal places.

%.2f print the floating point value in a space wide enough to it, with two
decimal places.

There are other waysin which you can control the printing process, for example
you can select whether "pad out" spaces are inserted to the | eft or right of the
value. | will leave you to find out these! Note also that you can specify the print
width of any item, even a piece of text, which makes printing in columns very
easy.

Functions

Functions So Far

We have already come across the functions main, printf and scanf. When you
write a program of any size you will find that you can use functions to make life
awholelot easier.

In the glazing program above we spend alot of time checking the values of
inputs and making sure that they arein certain ranges. We have exactly the
same piece of code to check widths and heights. If we added a third thing to
read, for example frame thickness, we would have to copy the code a third time.
Thisisnot very efficient, it makes the program bigger and harder to write.
What we would like to do is write the checking code once and then useiit at
each point in the program. To do this you need to define a function to do the
work for you.

Functions are identified by name and can return a single value. They act on
parameters, which are used to passinformation into them. In our case we want
afunction which is given the maximum and minimum values which something
can have, and returns avalue in that range.

We need to tell the compiler the name of our function, what parametersit has,
and the type of information it returns.

Function Heading
Wedo all thisin the function heading
float get_ranged_value (float min, float max)

Thistells the compiler that we are defining a function called
get_ranged_value. Thefirst word, float, tells the compiler we are defining a

Functions ? 37

function which will return the value of a floating point number. The second
item isthe function name, i.e. a name that we wish our function to be known
by. You create a function name using exactly the ssmerules as for a variable
name.

Thenext itemisalist of parameter names, enclosed in brackets. We have two
parameters, min and max. We must then tell the compiler the type of these two
parameters, in this case they are both floating point numbers.

Note that C does not do that much checking to make sure that you are giving
the right kinds of parametersin the correct order. If you get thiswrong the
program will fail, probably in a very confusing way.

Function Body

We then follow this definition with the body of the function, which isin fact a
block, making our complete function as follows:

float get_ranged_value (float min, float max)

{
float temp ;
do {
printf ("Give the value: ") ;
scanf ("%f", &temp) ;
} while ((temp < min) || (temp > max)) ;
return temp ;
}
return

The body of the function looks very like the code which we originally wrote,
however thereis one additional line:

return temp ;

Thisisthe means by which the function returns the value to whatever called it.
If our function has a type other than void it must return avalue of the
appropriate type. You return avalue by placing it in the program, after the
return keyword.

You can return at any point during a function. This can be used as a very neat
"get the hell out of here".

Calling a Function

When the compiler seesget_ranged_value it knows that thisrefersto a
previously defined procedure. It takes the values MAX_WIDTH and
MIN_WIDTH and feeds them into the function. Y ou can use max and min as
variables within the function, initially they are set to the values of the
appropriate parameter. Any changes to these parameters which you make inside
the function are not passed on to the outside world. When you reach the return
line in the function this causes the function to finish and pass back the value
following the return. Of course you must return something of the correct type,
otherwise the compiler will moan at you and nasty things might happen.

In our main program we would write something like :
width = get_ranged_value (MIN_WIDTH, MAX_WIDTH) ;

Functions ? 38

Local function variables

Note that inside our function we have declared avariable, temp. Thisis used to
hold the value which the user typesin, so that we can compare it with the
maximum and minimum. Thisisalocal variable. We only want to usetemp
during this function, so we tell the compiler that it is only declared inside the
function. When get_ranged_value finishesthe variableis discarded. Thisis
useful for two reasons:

It saves space. We are not reserving space for a variable when we are not going
to useit. temp only comes into existence when required and the memory it
usesisavailable at other times.

It reduces confusion. Because temp is only declared within
get_ranged_value that isthe only place you can useit.

If I mention temp in ancther part of the program the compiler will say that it
cannot seeit. This meansthat if someone e se has written a function which uses
alocal variable called temp there will be no confusion.

Scope

When talking about variablesin this way you often hear the word scope. Any
variable has a given scope. Y ou could describe the scope of a variable as that
portion of a program within which it is meaningful to use that variable.

If you declare a variable outside afunction it is effectively accessible
everywhere. Such variables are often called global, i.e. their scopeisthe entire
program. Y ou have to be careful when you make a variable global. The fact that
it can be used in any part of the program means that it can be corrupted in any
part of the program.

Up until now all our variables have been declared to be global. Thisis not good
practice. Only certain values are that important should be global. One part of
program design is deciding which of the variables need to be made global. This
is particularly valuable when several people are working on one project. If you
ever get involved with the writing of a large system thetrick is to get together
first and decide what global variables to use, then decide on the overall
structure, what each section is going to do and how they are going to exchange
data. Y ou can then go ahead and start writing your part of the system, securein
the knowledge that you will not be causing anyone el se problems.

As an example of variables and scope consider the following:

int fred ; |
void main () |
{ |
float fred ; |
| scope of
| local fred
} |
|
void road () | scope of
{ | global
int jim ; | | fred
| scope of |
[jim |
} | |

The global fred cannot be accessed by the function main, any referenceto fred
refersto the local variable. Within main thisvariableis said to be scoped out.

Functions ? 39

| adopt alittle convention when choosing variable names. If the variableis
going to be global | start the name with a capital letter, local variables are all

lower case, for example:
Window_Total

- would be a global variable whereas

counter

-would belocal.

Variables Local to Blocks

Y ou can extend theidea of little local variables even further, in that any block
can contain a variable definition which will last for the duration of that block.
When that block finishes the variable disappears. Thisis especially useful if you

need a little counter for ajob in the middle of a program:

Thisisa screen clear routine {
which will work on any inti;
machinel for (i=0;i<25;i++){
printf ("\n");
}
}

Thevariablei only exists for the duration of the block, so thisloop does not
interfere with any other variables called i which might be lying around your
program. If you have a sudden local need for a variable for a specific task it
makes very good sense to create one there and then to do the job. Y ou could
arguethat it is not very efficient to do this, because the variable is created each
time the block is entered, but it makes the program very much clearer and
reduces the chances of variable names clashing. Note that you must declare any

block variables at the very start of the block.

Full Functions Example

Thisisthe definitive double glazing example:

/* Functions Double Glazing Program */
/* Rob Miles Nov. 1990 */

#include <stdio.h>

/* Define our window size range */
#define MAX_HEIGHT 3.0

#define MAX_WIDTH 5.0

#define MIN_HEIGHT 0.75

#define MIN_WIDTH 0.5

/* Define a few costs */

#define COST_TO_MAKE 2.00
#define WOOD_COST 2.00
#define GLASS_COST 3.00
#define MARKUP_FACTOR 2.25

/* Define the maximum number of windows on our house */
#define MAX_WINDOWS 10

/* Function to get a value and validate its range */

Functions ? 40

/* returns a floating point value within min and max */
float get_ranged_value (float min, float max)

{

/* get_ranged_value variables : /
/*temp holds the value we are looking at. */
float temp ;

do {

printf (" enter the value: ") ;
scanf ("%f", &temp) ;

} while ((temp < min) || (temp > max)) ;
return temp ;

}

void main ()

{

/* main variables : */

/* width - width of current wind ow */

/* height - height of current window */

/* window_cost - cost to make the window */
/*window_sell - amount we sell the window for */
/* house_cost - cost to do the whole house */

/* house_sell - amount we sell the house job for */

float width, height, window_cost, window_sell, house_cost, house_sell ;

/* no_of_windows - number of windows in the house */
/*window_count - counter for current window */

int no_of_windows, window_count ;

printf ("Double Glazing House Calculator\n") ;
printf (" Rob Miles February 1996\n") ;

do {

printf ("Give the number of windows in the house : ") ;
scanf ("%d", &no_of_windows) ;

} while ((no_of_windows <= 0) ||

(no_of_windows > MAX_WINDOWS)) ;

house cost=0.0;
house sell =0.0;

for (

window_count =1;
window_count <= no_of windows ;
window_count++){

printf ("Enter the details of window %d \n", window_count) ;

printf (" enter the width\n") ;

width = get_ranged_value (MIN_WIDTH, MAX_WIDTH) ;

printf (" enter the height\n") ;

height = get_ranged_value (MIN_HEIGHT, MAX_HEIGHT) ;

window_cost = WOOD_COST * 2 * (width + height) ;

window_sell = window_cost * MARKUP_FACTOR ;

printf ("Window %d costs %.2f to make and sell for %.2f. \n\n",
window_count, window_cost, window_sell) ;

house_cost +=window_cost ;

house_sell +=window_sell ;

Functions ?41

printf ("\nTotal cost for %d windows : %.2f.\n",

no_of windows, house cost);

printf ("\nTotal sale price for %d windows : %.2f.\n",

no_of_windows, house_sell) ;

Pointers

For now we have only looked briefly at pointers, just using them to tell scanf
whereto put values it fetches for us. However, pointers are much more than
this, in fact they are an integral part of C. Unfortunately pointers are al'so
painfully difficult to understand, so do not fed upset if they do not make sense
immediately. Just keep looking at the examples until something makes sense!

A pointer isin fact just a different kind of variable. Y ou can regard a normal
variable as abox with aname on it. You can regard a pointer as atag on the
end of a piece of rope. By following the rope you can get to a box, into which
you can put something

Note that to keep things hunky-dory , C says that pointers can only point to
items of a particular type. Think of it like this, all theinteger boxes arered, all
the float boxes are green and so on. The rope of a pointer is also colour co-
ordinated, which means that if you try to tie a piece of red string onto a green
box (use an int pointer to point at afloat value) the compiler will raise aesthetic
objections and complain about your colour scheme!

You tell C that you are declaring a pointer to a type, rather than a variable of
that type, by putting a* in front of the name of the variable, i.e.

inti: i integer variable

int * ptr; ptr 0 pointer to an integer

i isdefined as an integer variable. ptr is defined as a pointer to integers.
Remember that neither variable has anything useful in it just after declaration,
i.e i containsasilly value and ptr points nowhere useful.

To find the address of something, i.e. the value you put in a pointer to make it
point at it, we use the & character.

We have already met &. It means create a a piece of rope which istied to the
box which holds this variable. The following line of code :

ptr = &i ;
- doesthefollowing :
int i i C integer variable
int * ptr; ptr pointer to an integer

Functions ? 42

ptr now pointsat i. If | want to change the contents of the box that ptr points at
| can usethe * operator to de-reference the pointer and get at the contents.

*is new. It means follow the rope on this pointer to the box it is fixed to and use
the value in the box.

* and & are complementary. You will use & when you have a variable which
you want to make a pointer to and * when you want to refer to the contents of a
box which a pointer is pointing at (if this confuses you at the moment just think
in terms of pointers being bits of rope tied to boxes and variables being boxes
with names on...).

The upshot of al thisisthat, once we have made ptr point toi, the following
two lines of code have exactly the same effect :

i=99;

*ptr =99 ;

If you want to have a quick way of remembering what is going on consider this

inti;
*(&i)=99;
- thisisactually legal! It means make a pointer toi (that iswhat the & does)

and then de-references it (that is what the * does). Then put 99 into the place
that the pointer to i pointsto, i.e. it isfunctionally equivalent to:

i=99;

- we put the brackets in to keep the compiler happy and tell it the order in
which things are happening.

Asyou might expect, if you have not given avalueto a pointer then it istied on
to most any old thing, and referring to the contents of an undefined pointersis
one of the shorter ways to explode a program....

Consider the following program:

#include <stdio.h>
void main ()
{
int fred, jim ;
int *pointerl, *pointer2 ;
pointerl = &fred ;
pointer2 = &jim ;
pointerl =99 ; fred = 100 ;
*pointer2 = *pointerl ;
printf (" The value of fred is %i.\n", fred) ;
printf ("The value of jim is %i. \n", jim) ;

}

Note that the * operator can be used on both sides of an assignment, i.e. the
contents of the box on the end of this rope will work equally well for putting
things into the box as for taking them out. Note also that we are overloading
the * operator. This means that we are using it to mean more than one thing,
because we also use * to mean multiplication. The C compiler isusually ableto
make sense of what we give it, and work out what we really mean. However if
you are performing multiplication with the contents of pointersit isagood idea
to put things inside brackets so as to force the point, e.g.

result = (*value_1 pointer) * (*value_2_pointer) ;

Functions ? 43

NULL Pointers

It isinteresting to note that It is often very useful to be able to denote the fact that a pointer does not point to
the way that C works on the anything useful. For example, if your function is supposed to set a pointer which
PC if you store something pointsto the item it has found, but it does not find the item, you would find it useful
where the NULL pointer to be able to say this your program. In the C standard headers, for example

points you will almost stdio.h, thereisan address called NULL. This address does not exist, trying to
certainly crash the machine! useit will result in your program doing strange things, but it can be used to mean

"this pointer does not point anywhere". The C libraries use this extensively, for
exampleif you try to get hold of a block of memory (see malloc later in the notes)
but the memory is not available you will instead be given a pointer set to NULL, to
indicate that the memory could not be found.

Y ou should never put things where NULL points, instead you should test the
value of the pointer against NULL:

if (memory_base == NULL) {
printf ("No more memory!\n\n") ;
exit (1) ;

Pointers and Functions

Y ou can send values into functions very easily, smply by giving them as
parameters, in the case of get_ranged_value function we have a parameters
of type float, into which we can feed values. However, asthings stand, a
function can only return asingle value, viathe return statement. Suppose we
wanted to enhance get_ranged_value so that it returned whether or not the
user had abandoned the program. We could tell the user that a value of -1 at
any time means abort. However, we now have to return more than one thing
from our function, both the result and whether or not the function succeeded.

We can only pass information into functions, and they can only return asingle
value, so thiswould seem to be impossible. Fortunately we can use pointersto
solve this problem, we give the function a pointer to where we want the result
putting, just like we do with scanf.

Wetdll C that a given parameter to a function is a pointer in the same way that
we declare a variable which is a pointer. Making these changes leads to the
following:

/* If we get this value as input it means give up */
#define ABORT_VALUE 0

/* Function to get a value and validate its range */

/* returns TRUE if the value was OK and the abort */

/* value was not given. */

/* puts a floating point value obtained from the user */
/* into the location pointed at by result */

float get_ranged_value (float min, float max, float * result) {
/* get_ranged_value variables : */
/* temp holds the value we are looking at. */
float temp ;
do {
printf (" enter thevalue:");
scanf ("%f", &temp) ;
if (temp == ABORT_VALUE)
return FALSE ;
} while ((temp < min) || (temp > max)) ;

Functions ? 44

*result =temp ;
return TRUE ;

}

We can call the function and test the result in the following way:

if (get_ranged_value (MIN_WIDTH, MAX_WIDTH,
&width)==FALSE)
break ;

Because we can call functions anywhere, even in the middle of comparisons, we
can get the value and then immediately test the result of the function. In the
code snippit above the program will break out of an enclosing loop if the user
gives the abort value for the width.

Once you have got the idea of how pointers can be used to get information in
and out of functionsit israther simple. In the meantime just use the above
function as an example of how to do it and copy how it works! (thereisno
dishonour in copying chunks of working program into creations of your own,
although for assessment purposes we prefer it if the program is mainly your
own work!).

Static Variables

When a program returns from a function C deletes all the local variables. You
can think of thisas C taking all the boxes off the local shelf and throwing them

away.

If the function is ever entered again C will make new boxes, paint their names
on them and then put them on the local shelf. This means that a particular local
variable will cannot be used to hold a value from one call of afunction to the
next. If you want avariableto last longer than the length of your function you
have to make it global. However, as we have already seen, a very good
programming trick is to keep the number of global variablesto an absolute
minimum.

C gets around this problem by alowing another storage class called static. A
storage classis an extra piece of information which you give C totdl it more
about how you want the variable stored. There are other storage classes, we will
come to them later. When you declare alocal variable you can put the word
gtatic in front of the declaration, for example:

static int fred ;

When C sees thisit makes a box as usual, then it paints the name of the box,
along with the name of the function within which it was declared, and then puts
this box on athird shelf, the static shelf. Unlike the local shelf, the static oneis
not emptied when the function finishes. Instead the value is kept in case the
function is called again. Note that C hasto put the name of the function so that,
if several functions have a static variable with the same name, it can find the
right one.

With a static variable functions can retain variable val ues over successive calls.

Functions ? 45

Arrays

Why We Need Arrays

Y our fame as a programmer is now beginning to spread far and wide. The next
person to come and see you is the chap in charge of the local cricket team. He
would like to you write a program for him which allows the analysis of cricket
results. What he wantsis quite smple; given alist of cricket scores he wantsa
list of them in ascending order.

"Thisiseasy" you think. Having agreed the specification and the price you sit
down that night and start writing the program. Thefirst thing to do is define
how the data is to be stored:

int scorel, score2, score3, score4, scoreb, score6, score?
score8, score9, scorel0, scorell ;

Now you can start putting the data into each variable:

printf ("\nEnter the score for each player in turn.\n\n") ;
scanf ("%i", &scorel) ;
scanf ("%i", &score2) ;
scanf ("%i", &score3) ;
scanf ("%i", &scored) ;
scanf ("%i", &score5) ;
scanf ("%i", &score6) ;
scanf ("%i", &score7) ;
scanf ("%i", &score8) ;
scanf ("%i", &score9) ;
scanf ("%i", &scorel0);
scanf ("%i", &scorell);

All we have to do next is sort them..... Hmmmm..... Thisis awful! There seems
to be no way of doing it. Just deciding whether scorel isthelargest value
would take an if construction with 10 comparisons! Clearly there hasto be a
better way of doing this, after all, we know that computers are very good at
sorting thiskind of thing.

C provides us with athing called an array. An array allows usto declare a
whole row of a particular kind of box. We can then use things called subscripts
to indicate which box in the row that we want to use. Consider the following:

Arrays ? 46

void main ()

{
int scores [11] ;
inti;
for (i=0; i<11; i=i+1) {
scanf ("%i", &scores [i]) ;
}
}

Theint scores [11] tells the compiler that we want to create an array. The bit
which defines the size of the array isthe [11]. When C sees thisit says "ahal
What we have hereis an array”. It then gets some pieces of wood and makes a
long thin box with 11 compartmentsin it, each large enough to hold asingle
integer. It then paints the whole box red - because boxes which can hold
integers arered - and then writes "scores' on the side.

Each compartment in the box is called an element. In the program you identify
which element you mean by putting it's number in square brackets|[] after the
array name. This part is called the subscript. Note that the thing which makes
arrays so wonderful isthe fact that you can specify an element by using a
variable, aswell as a constant. In fact you can use any expression which returns
an integer result as a subscript, i.e.

scores [i+1]
- isquite OK.

C numbers the boxes starting at 0. This means that you specify the first element
of the array by giving the subscript 0. There is consequently no element
scores [11]. If you look at the part of the program which reads the valuesinto
the array you will see that we only count from 0 to 10. Thisis very important.
An attempt to go outside the array bounds of scoreswill not cause an error, but
could lead to unpredictabl e things happening!

Thereal power of arrays comes from our being able to use a variable to specify
the required element. By running the variable through a range of values we can
then scan through an array with a very small program; indeed to change the
program to read in 1000 scores we only have to make a couple of changes:

void main ()
{
int scores [1000] ;
inti;
for (i=0; i<1000; i=i+1) {
scanf ("%i", &scores [i]) ;
}
}

The variable i now goes from 0 to 999, vastly increasing the amount of data we
are storing. Notethat if | ever create arrays like this | would use #define to set
the limits on the sizes, so that | can easily change them later.

Sorting

Now we can think about sorting our list of cricket scores. Because of the human
passion for order computers spend alot of their time sorting things. There are
vast and dusty tomes in any programming archive on the subject of sorting, and
if you look carefully you will find that C actually has a sort routine hidden in
one of itslibraries. However, we are not going to use a piece of ready written
code, we are going to do it all our way - perhaps humming a song made famous
by Frank Sinatra.

Arrays ? 47

If you were given 11 numbersto put in order you would look through them for
the biggest, write it down and then put down the second largest (which you
spotted while you were looking for the biggest) then add the third, which you
might have to look for, and then add the others which you can easily pick out
from the remainder. In short you would apply massive amounts of processor
power (i.e. your brain) in afairly random, inefficient way. The problem isthat
when you try to write a program to sort alist of numbers you will find it
difficult to describe to yourself how you would do the task, so explaining the
task in C israther difficult!

In the fullness of time you will get used to all thelittle tricks used when
programming, and come to terms with the way that computers "think".
Eventually you will be able to think down to the level of the computer, and at
that point you can call yourself a programmer!

We are going to use a neat little sorting method called the Bubble Sort. Thisis
avery simple sorting routine which is easy to write and make work. It involves
the writing a program which works in following way:

1. Start at thetop of the array.

Look at thefirst and the second elements.

If they are the wrong way round, swap them.
Look at the second and third elements.

If they are the wrong way around, swap them.

o o~ w DN

Keep on doing this until you get to the end of the array.
7. Go back to thefirst step.

Thelittle "program" above does not have a way of stopping, however it is quite
easy to decide when you have finished, if you go through the entire list without
making any swaps the list must be in the correct order. This solution, whilst a
bit boring for ahuman brain, isthe kind of thing that computers just love to
bits, a C version of thisis:

Arrays ? 48

#include <stdio.h>
#define teamsize 11
void main ()
{
int scores [teamsize] ; int i, swaps, temp ;
printf ("Cricket score sorter 1.0\n");
printf ("Rob Miles\n\n") ;
printf (" Give each score and press return\n\n") ;

for (i=0; i<teamsize; i++) {
printf ("Score for batsman %d : ", i+1);
scanf ("%d", &scores [i]) ;

}

printf ("\nNow doing the sorting...") ;

do {
swaps =0 ; /* clear our swap marker */
for (i=0; i<10; i++) {
if (scores [i] > scores [i+1]) {
/* if we get here we have to swap */
temp = scores [i+]] ;
scores [i+1] = scores [i] ;
scores [i] =temp ;
swaps =1; /*mark a swap */
}
}

} while (swaps '=0) ;
printf ("\nThe results are : \n\n") ;

for (i=0; i<teamsize; i++) {
printf (" %d\n", scores [i]) ;
}
}

The program above actually works! It splits naturally into three chunks, reading
the data, sorting the data and printing the results out. Note the use of a
temporary variable when we swap the elements around. Note also that, because
we compare a value with the one after it in the array, we only count as far as 10
in the loop which does a pass through the data. If we said 11 the program
would still run, but we might find a strange value from beyond the end of the
array appearing in our datal

Array Types and

Sizes

Y ou can have arrays of any type you like, including ones that you create (see
later). Thereisusually alimit on the maximum length of array that you can
create, but thisis usually very large and depends on the version of C that you
areusing.

The C compiler needsto know how big an array is going to be, i.e. when you
write your program you must decide the amount of data you want to store. This
can lead to problems, sometimes you do not know in advance how big an array
needs to be. You run therisk of either asking the compiler for too much in
which case your program will use more memory than it needs, or not asking for
enough, in which case your program might fail for lack of room. Aswe shall

Arrays ? 49

see later, this problem is not insurmountable, but for now we must assume that
our program must declare an array of appropriate size, and we must decide that
size when we write the program itself.

More Than One Dimension

The array provides uswith away of grabbing a row of boxes, and accessing
each box with a subscript. Thisisfine for linear lists of data, but sometimes you
want to hold data of a different shape, perhaps a table or matrix.

Y ou would hit this problem if your cricket playing friend comes back the
following week, very pleased with your program and, as users always are,
anxious to have it do something e se. In this case he wants you to store the
results of a whole team season, and then do various statistical things with them
which are so beloved of cricket players, in this case find the highest score of the
season and player who scored the greatest number of runsin the season.

Resisting the temptation to point him at a spreadsheet program, which iswhat
he really needs, you agree to improve your software. Y ou now haveto store
several rows of data. If you were writing the results down on paper you might
have something like:

Player | Games

0 1 2 3
0 10 23 25 80
1 12 34 23 54
2 23 54 6 7
3 16 54 62 8
4 40 23 65 4
5 21 76 8 0
6 4 43 32 2
7 20 12 23 1
8 12 43 22 11
9 3 12 23 15
10 32 2 32 43

From this table you can see that the runs scored in game number 2 by player
number 1 are 23 . You identify a particular score by looking along the top for
the game number and down the side for the player number. Note that in my
table | am numbering the rows and columns starting at 0O, i.e. | have a game
number 0 and a player number 0, which you might not have in real life (you
would need to adjust the values when you display the answers (or make all the
dimensions 1 bigger and then waste element 0).

If you think about the data above you can seethat it isjust a number of one
dimensional arrays, i.e. the scores for a number of games which have been put
side by side. C letsyou create arrays of arrays:

#define TEAMSIZE 11
#define SEASONLENGTH 4

int scores [SEASONLENGTH] [TEAMSIZE] ;

Arrays ? 50

-what we have hereis a number of arrays of length teamsize, one for each
match in the season. | can refer to each individual element by giving two

subscripts:
scores [2] [1]

- would refer to the scorein game 2 of player 1. Y ou can have as many arrays of
arrays asyou like, the only limit being your brainpower when it comes to

sorting out what things mean...

The program to solve our problem would go as follows:

/* Cricket team score analyser */

/* Rob Miles - 1993 */

/* Reads in the scores from 6 cricket seasons and then */
/* prints out some statistics */

#include <stdio.h>

#define TEAMLENGTH 11
#define SEASONLENGTH 7
void main ()
{
/* define our main storage array */
int scores [SEASONLENGTH] [TEAMLENGTH] ;

/* define our totals array */
int totals [TEAMLENGTH] ;

/* define our counters */
int game_count, player_count ;

/* topscore holds the highest score so far */
int topscore ;

[* first read our data */
for(game_count=0;
game_count < SEASONLENGTH ;
game_count++) {
for (player_count=0;
player_count < TEAMLENGTH ;
player_count++) {

printf ("Enter score player %d game %d : ",
game_count+1, player_count+1);
scanf ("%d",
&scores [game_count][player_count]) ;
}
}

/* now zero our totals array */

for (player_count=0;
player_count < TEAMLENGTH ;
player_count++) {
totals [player_count] =0 ;

}

/* Now set our initial to p score */
topscore=0;

Arrays ? 51

/* Now work out our results */
for(game_count=0;
game_count < SEASONLENGTH ;
game_count++) {
for (player_count=0;
player _count < TEAMLENGTH ;
player_count++) {

/* increase our totals */
totals [player_count] +=
scores [game_count] [player_count] ;

/* decide if we have a highscore */
/* bigger than our current one */
if (scores [game_count] [player_count] >
topscore) {
topscore =
scores game_count][player_count];

}

/* Now print out the results */
printf ("\n\nScore totals:\n\n") ;
for (player_count=0;
player_count < TEAMLENGTH ;
player_count++) {
printf (" Total for player %d : %d \n", player_count+1,
totals [player_count]) ;

}

printf ("\n\nHighest score was : %d\n\n", topscore) ;

You will find it very useful to study this code carefully, it contains many
programming tricks you will use in your programs over and over again!

Asalittle exercise you may wish to try the following modifications to the
program :

? print out the number of the player with the highest score.

? print out the number of the player with the highest average score.

? print out the total number of runs scored in the season.

Arrays ? 52

Switching

Making Multiple Decisions

We now know nearly everything you need to know about constructing a
program in the C language. Y ou may find it rather surprising, but thereis
really very little left to know about programming itself. Most of therest of Cis
concerned with making the business of programming simpler. A good example
of thisisthe switch construction. Suppose you are refining your double
glazing program to allow your customer to select from a pre-defined range of
windows. Y ou ask something like

Enter the type of window:

1 = casement
2 = standard
3 = patio door

Y our program can then calculate the cost of the appropriate window by
selecting type and giving the size.Each function asks the relevant questions and
works out the price of that kind of item.

When you come to write the program you will probably end up with
something like:

void handle_casement (void)
definition o f handle_casement
void"HandIe_standard (void)
definition of handle_standard
void"HandIe_patio (void)
... definition of handle_patio

void main (void)
{
char select ;
printf ("\n 1 = casement") ;
printf ("\n 2 = standard") ;
printf ("\n 3 = patio door") ;
printf ("\nEnter the type of window : ") ;
scanf ("%c", &selection) ;
if (selection =="1"){

Switching ? 53

handle_casement () ;

if (selection =="2") {
handle_standard () ;

if (selection =='3"){
handle_patio () ;
}

}

Thiswould work OK, but israther clumsy. You have to write alarge number of
if congtructions to activate each option.

Because you haveto do thisalot C contains a special construction to allow you
to select one option from a number of them based on a particular value. Thisis
called the switch construction. If you write the above using it your program
would look likethis.

void main (void)

char selection ;

printf ("\nEnter the type of window : ") ;

scanf ("%c", &selection) ;

switch (selection){

case 'l' : handle_casement ();
break ;

case '2': handle_standard () ;
break ;

case '3': handle_patio () ;
break ;

}

The switch command take a value which it uses to decide which option to
perform. It executes the case which matches the value of the switch variable.
Of course this means that the type of the cases that you use must match the
switch selection value although, in true C tradition, the compiler will not tell
you if you get it wrong, it will just delight in doing the wrong thing! One other
possible naughty is the use of afloat type for the switch selection. Thisis not
allowed: because floating point numbers cannot be held exactly it would
sometimes be impossible to find a match.

This mistake ishigh in the Thebreak statement after the call of the relevant routine is to stop the program
top ten programming errors, running on and performing the code which follows. In the same way as you break
if you find more than one out of aloop, when the break isreached the switch isfinished and the program
option being called make continues running at the statement after the switch. Note that unless you give a
sure you have all your break C will continue to run down past all further cases, i.e. the case item just says
breaks! where to start running in the switch, not where to stop. Consider the following :
inti;
i=1;
switch (i) {
casel:
printf ("one\n") ;
case 2:

printf ("two"\n);
break ;

}

Because thereis no break at the end of the handling of the case for 1, the
program would print out :

Switching ? 54

one
two

Y ou can use thisto good effect if you want a certain case to be selected by more
than one value of the switch variable :
case'c':
case'C':
case'l':
handle_casement () ;
break ;

Thiswould cause handle_casement to be called if the user pressed 'C', 'c or '1".
Y ou can have as many additional options asyou like.

Another other useful feature isthe default option. This gives the switch
somewhere to go if the switch value doesn't match any of the cases available; in
our case (sorry!) we put out an appropriate message, for example:

void main ()
char selection ;
printf ("\nEnter the type of window : ") ;
scanf ("%c", &selection) ;
switch (selection){
case 'l' : handle_casement ();
break ;
case '2': handle_standard () ;
break ;
case '3': handle_patio () ;
break ;
default : printf (" \nlnvalid command\n")

}

The program would print out "Invalid Command" if anything other than a
value with a matching case was entered.

Strings

How long is a piece of string?

Strings are computer jargon for lumps of text. The computer itself can get by
quite happily with numbers, but we fuddy duddy old humans seem to prefer
chunks of text, for example | prefer to be referred to as Rob Miles rather than
0883059276! If you want to write a program which refers to someone by their
name, rather than some meaningless numbers, you need to have a mechanism
for storing it. Some programming languages have string handling built into
them. The best example is BASIC, which contains special instructions for

Strings ? 55

string manipulation. Cisnot like BASIC. In C you have to set up strings
yoursdlf, the hard way. At first thisis more tedious, but you find that the C way
of doing thingsis much more flexible.

So, what do we mean by string? A string is any sequence of characters. A
character isthekind of thing you get from a single keypress on the keyboard, or
the thing you seein one position on the screen. We already know about the C
data type called char, you can regard a string as a series of characters. In C we
have just seen that the way to get yourself a series of memory locationsisto
declare an array of them. Thismeansthat in C strings and arrays of characters
are exactly the same thing:

char name [20] ;

The above would declare a string capable of holding a 20 character name.

Thereisjust one more thing that you need to know about strings. Suppose | put
my name in the above string. | put the characters'R’, 'O, 'B' into thefirst three
locations. Then | have a problem. The array has been set up to hold names up to
20 characterslong. Thisisto allow for unfortunates called Murgatroyd, who
need the space, but | do not. | need to have away of telling C that thisisthe
end of my name, and that the remaining spaces are not used.

C lets me do this by use of a special convention: All strings are terminated by a
character holding the value 0. To terminate my name, | simply put a0 into the
location after the last character. You could | suppose regard 0 as the Arnold
Schwartznegger of characters! The O at the end of the string is often called a
null character. Maybe we are back to Arnold Schwartznegger again! Do not
confuse the null character with the character code which represents'0'. 0 isthe
character you get when you press'0' on the keyboard. It is represented by the
character code 48. Null isan internal value used by C.

This means that the data space after the terminator is unused by my program.
This can be a problem, but is not worth losing much sleep over. Later on we
will look at ways of getting exactly the amount of memory space that we want.

Remember that when you create a string to hold some text, you must allow
space for the terminator aswell, i.e. name [20] hasroom for 19 characters of
the name, followed by the terminator. Do not make the mistake of saying, "Ah
well, if the nameis 20 characters| do not need the terminator, because C knows
the array is only 20 characterslong”. Thisis not the case. If you missthe
terminator off C will wander down memory looking for anull, and
conseguently think that your string isalot longer than it actually ig!

Putting Values into Strings

Thefact that strings are arrays of characters with a null on the end is something
which the C compiler already knows. We put string constants into our code by
putting them between double quote characters :

"hello mum"

When the compiler seesthefirst " it says"Ahal Hereisasdtring. | will store it
in memory, and when | seen the closing " | will put anull on the end. | will
then create a pointer to this piece of text and use that in the program.” Quite a
mouthful huh? Note however that the pointer which is created is a constant.
This means that you cannot change where it points. There is a good reason for
this; if you did change the pointer you would then have alump of memory
which could not be accessed, because nothing would point to it. If you want to
put starting values into strings (or any kind of array) you have to do something
likethis:

Strings ? 56

You can use the same trick to
put an initial value into any
variable.

char name [20] = "Fred Bloggs" ;

The declaration creates an array of characters, which you can regard as a string.
Trueto the way that arrays work, nameis a pointer to your area of memory. When
the compiler processesthe string "Fred Bloggs" it ends up creating a pointer to
an area of memory with :

Fred Bloggsnull

in it. Because of the way C works, it is only possible to initialise arrays which
are declared as global variables, i.e.

char setting [10] = "off" ;
isOK but

void message (void)

{

}

- would cause a compilation error because thistime setting isalocal variable.
You can initialise simplelocal variables, i.e.

char setting [10] = "off" ;

void message (void)

{
inti=99;
}
- would be OK.

Using Strings

Asfar as Cis concerned, astring is ssimply an array of characters with anull on
the end. Y ou can use all the normal array and pointer operations on this chunk
of memory. For example, consider the problem of taking a full name as above,
and printing out only the surname portion.

Thefirst thing we must decide is how we determine where the surname starts.
The convention would seem to be that the surname starts after the space in the
name. What we therefore have to do is print the name, starting from the
character after the space. This means that thefirst task isto find the spacein
the name. We do this by searching down the array, starting at the beginning
and looking for a space character. When we see one we stop. The following
code will do this:

/* our array name will hold the name */
/* we will see how to read the name later */
char name [20] ;

/* position will hold the position in the name */

int position ;
position =0; /* look from the start */
while (name [position] I="") {

/* If not a space... */

position++;

/* ..move on to next */

}
/* When we get here position has the subscript value */
/* of the space in our string. */

Strings ? 57

The variable position contains the subscript of the space in our name. We
want to start printing from the character after the space. We must therefore
move on to the next location :

position_++;
/* Move down one */

OK. Now for theinteresting hit. We will be giving printf a pointer to the
character which we want to start printing at. We know that name [position]
isthefirst character that we want to print out. We also know that printf is
supplied with the position in memory to print from, and prints until it seesa
null. What we therefore want to do is start printing from the position of the first
character, up to the end of the string. We can do thisin C with :

printf (&name [position]) ;

We can put an & in front of any variable to get the address of it. By giving
&name [position] we are giving the address of the 'B'. We know that after
that character comes the surname, so the program will print out what we want.
If you do not believe this, try running the program!

This piece of code is not perfect, you might like to consider what would happen
if the user gave a name with no space it, or a name with several spaces between
the first name and the surname. | would expect any of you to write programs
which would worry about these things as a matter of course. Thistechniqueis
called defensive programming and translates to "make sure the problem appears
somewhere else". Y ou should practice defensive techniques every time you
write some code. Once you have worked out how to solve the problem you
should then go back and wonder how your solution can go wrong, and add extra
handling for that!

Note that you could have done the same job using pointers rather than array
elements and subscripts. Seeif you can understand this:

/* name array as before */
char name [20] ;

[* points to the start of the surname */
char * SurnameStart = name ;

while (*SurnameStart 1="") {
SurnamesStart++ ; /* skip to the space */

}

SurnamesStart++ ; /* move past the space */

printf (SurnameStart) ;

/* print starting at the surname */

The code does exactly the same job, the differenceisonly in how it is
expressed. You might like to consider which of the two programsis better and
why.

The String Library

Unlike some other languages, for example BASIC, C does not have any string
handling "built in". Instead, as for input/output, it relieson a set of library
routines which are supplied with the C system. These routines are common
across all versions of C, and are specified in the string.h header file. You can
use these routines to do string copying, comparison and concatenation for you.

Here are a few routines you may find useful :

Strings ? 58

strcpy
int strcpy (char * dest, char * source) ;

String copy. Has two parameters, both of them pointers to char. Will copy
characters from the source to the destination, up to the null terminator of the
source:

char name [20] = "Fred Bloggs" ;
char safety [20] ;

strcpy (safety, name) ;

would result in safety holding the string "Fred Bloggs".

strcpy returnsthe number of charactersthat it transferred. Note that if you use
strcpy with an un-terminated string on the input you will get big problems!

strcmp
int strcmp (char *s1, char *s2);

String compare. Compares one string with another, and returnsthe result 1 if
thefirst string was greater than the second, O if the two strings are the same
and -1 if the first string was | ess than the second. C uses the character codes of
the strings to decide on greater and less than, meaning that normal rules of
alphabetic ordering apply; i.e.a<b, A <a 1<A.

printf ("%d", strcmp ("Fred", "Jim"));
would print out -1, because Fred islessthan Jim alphabeticaly.

strlen
int strlen (char * string) ;

string length. Used to find out the length of a string. Y ou should be able to
write a function to do this yoursdf, but like any good programmer you will
always look for the easy way to do something.

printf ("%d", strlen("HelloMum")) ;

would print out 8. (Note that the terminator is not counted as a character in the
string.)

Reading and Printing Strings

You will often want to read strings from the keyboard, and print them out. C
provides another format specifier, %s to mean a string. This means that you
can read a string from the user with code which looks like this:

char YourName [50] ;
scanf ("%s", YourName) ;
printf ("Hello %s\n", YourName) ;

Note that because YourName is actually a pointer to a char (that's what arrays
are) you do not need to put the & pointer in front of the name.

However, doing formatted reads with stringsis not usually a good idea. C has
in itslittle head the idea of white space. White space is a gap which marks the

Strings ? 59

end of one thing and the start of another. Things separated by white space are
different values, for example

2 3

- isnot the value 23, but the value 2 followed by the value 3, with white space
in between. White space can be described as :

Any number of spaces or newlines or tab characters.
This meansthat the string :
Rob Miles

- isactually two strings, Rob followed by Miles. If you really want toread in a
line of data which may contain white space you should use a new function
called gets (getstring). gets isaroutine in stdio which fetches characters
until the end of aline, so you can read data containing spaces :

char buffer [120] ;
gets (buffer) ;

Note that gets does not check for the length of the string, it assumes that you
will have reserved enough space to hold the text. The trick isto reserve the
length of aterminal line plus a bit, | usually make such lines 120 characters
long. If | wanted to hold the namein asmaller sized string | would copy it there
oncel had read it in, and thistime | would check the length!

While we are on the subject of useful routinesin stdio | will mention getchar.
This allows you to read a single character from the keyboard, without the user
having to pressthe return key. It returns the character pressed :

char ch;
ch = getchar ();

Note that you have to put the () after the call of getchar so that the compiler
can tell that thisisafunction we are calling.

Bomb Proof Input

Users are stupid. Really stupid. They find ways of crashing your programs
which you would never think of in amillion years. The experience of seeing
someidiot with half a brain cell blow away your wonderful program with a
single keypressis a very depressing one. You must always bear in mind that if
someone crashes your program you look stupid and they ook clever. Any
programmer that says to the user "You idiot, you have crashed my program" is
not a Real Programmer, heisjust a pretender. What you should say is"Oh
Dear, what keys did you press’, and then take steps to ensure that it never
happens again.

One of the places where things can go wrong iswhen your program innocently
asks for a number :

int Age ;

printf ("How old areyou : ") ;
scanf ("%d", &Age) ;

printf ("You are %d years old.\n") ;

Thisisa perfectly legal piece of code, but what happensif your user types:

twenty five

- and pressesreturn. Try it!

Strings ? 60

Who made the mistake, was it the programmer or the user? Since we have not
got the time to discuss this, we should simply make sure that our program is
proof against it, and says something like "l did not recognise that value,
please type in avalue, e.g. 25, and press return "

We do this by always regarding input from the user as a string. We read the
string in and try to convert it to a number. If the conversion fails, we ask for
another string.

To do thiswe use a very useful function in stdio called sscanf. This does all
the things that scanf does, but takes the input from a string, rather than the
keyboard. Like scanf, sscanf returns the number of itemsit successfully read,
so that we know if the values made sense. Consider the following :

void main (void)

{
char buffer [120] ;
int value, result ;
do {
printf ("Give me avalue:");
gets (buffer);
result = sscanf (buffer, "%d", &value);
} while (result '=1) ;
printf ("%d\n", value) ;
}

If you run this program and give it some values you can only get out by giving a
valid integer. In your programs you should always use this technique when
reading numbers from users.

Structures

What is a Structure?

Often when you are dealing with information you will want to hold a collection
of different things about a particular item. For example, consider if the Nat.
West. Bank commissioned you to write a customer database system. (it isin fact
rather unlikely that thiswill happen - such systems are written in COBOL, not
C!). Like any good programmer who has been on my course you would start by
doing the following:

1. Establish precisdly the specification, i.e. get in written form
exactly what they expect your system to do.

2. Negotiate an extortionate fee.
3. Consider how you will go about storing the data.
From your specification you know that the program must hold the following:

Structures ? 61

customer name - 30 character string
customer address - 60 character string
account number - integer value

account balance - integer value

R I B e)

overdraft limit - integer value

The Nat. West. have told you that they will only be putting up to 50 peopleinto
your database o, after a while you come up with the following:

#define MAX_CUST 50
#define NAME_LENGTH 30
#define ADDR_LENGTH 60

char name [NAME_LENGTH] [MAX_CUST] ;
char address [ADDR_LENGTH] [MAX_CUST] ;
int account [MAX_CUST];

int balance [MAX_CUST] ;

int overdraft [MAX_CUST] ;

What we haveis an array for each single piece of data we want to store about a
particular customer. If we were talking about a database (which is actually what
we are writing), the lump of data for each customer would be called a record
and an individual part of that lump, for example the overdraft value, would be
called afield. In our program we are working on the basis that balance[1]
holds the balance of the first customer in our database, overdraft [1] holdsthe
overdraft of the first customer, and so on.

Thisisall very well, and you could get a database system working with this
data structure. However it would me much nicer to be able to lump your record
together in a more definite way.

C letsyou create data structures. A structureis a collection of C data types
which you want to treat as a single entity. In C alump of datawould be called a
structure and each part of it would be called a member. To help us with our
bank database we could create a structure which could hold all the information
about a customer :

struct customer

{
char name [NAME_LENGTH] ;
char address [ADDR_LENGTH] ;
int account ;
int balance ;
int overdraft ;

b

This defines a structure, called customer, which contains al the required
customer information. Having done this we can now define some variables :

struct customer OnlyOne ;
struct customer EveryOne [MAX_CUST] ;

Thefirst declaration sets up avariable called OnlyOne, which can hold the
information for a single customer. The second declaration sets up an entire
array of customers, called EveryOne which can hold all the customers.

Werefer to individual members of a structure by putting their name after the
structured variable we are using with a . separating them, for example:

OnlyOne.account

Structures ? 62

- would refer to the integer member account in the structured variable
OnlyOne. You can do thiswith elements of an array of structurestoo, so that :

EveryOne [25].name

- would be the pointer to the part of memory containing the name of customer
25.

How Structures Work

Knowing how structures work makes using them alot easier. We know that C
is actually very simple minded about the way that it does things, thisincludes
how it handles structures.

When C isgiven a struct definition it goes Ahal Here comes a structure. | will
work out how much memory it needs and remember whereaboutsin this chunk
of memory each member starts. This meansthat for our bank example :

char name [30] Thefirst 30 locations of the structure hold the name,
char address [60] The next 60 locations hold the address.
int account Next comes space for the account number

.. and so on. When you declare a variable of this structured type C makes a
variable of the correct size. When you then do something like

OnlyOne.account =99 ;

C says, | remember that the account valueis stored after the 90 characters of
the name and address members, and puts the value in the correct place.

If you have an array of structured variables, C just makes avariable with is:

size of array * size of structure

- in size and then fillsin the members of each structure as it goes.

This meansthat, if you know how much memory int, float and char variables
take up, you can work out how much memory any given structure needs.
However, since C has aready done thisfor you, it seemsalittle silly to have to
doit manually. C provides afacility called sizeof (item). Thisreturnsthe
number of locations which the item takes up in memory. We could do things
like:

printf ("%d locations.\n", sizeof (struct customer)) ;

It isvery useful to be ableto do this, particularly when you start sending the
contents of structuresto files.

Pointers to structures

Y ou can have pointers to structured data types, just like you can point to any
other type, for example

struct customer * cust_pointer ;

Thisisa pointer to a customer record. You would set it to point somewherein
the usual way :

cust_pointer = &OnlyOne ;

Structures ? 63

the -> ismade up of the
character minus (-) directly
followed by the character
greater than (>)

If you think about it, we must be able to use pointers to structures because we
can have arrays of structures and we know that an array is simply a lump of
memory of the appropriate size, with a pointer to the bottom of it.

C keepstrack of pointer types for us. Thisis particularly important when we
start modifying the value of a pointer, for example:

cust_pointer++ ;

This means increase the value of cust_pointer by one, i.e. make
cust_pointer point to the next customer record in memory. C knows how
many memory locations that a customer record takes, so it moves down memory
that amount.

When we have used a pointer before we have used a* to de-referenceit. De-
reference means get me the thing that this pointer points at so that :

*cust_pointer

- means the structure pointed at by cust_pointer. When you want to get hold of
one of the members of a structure which you are pointing at you have to tell C to de-
reference the pointer to the structure and then return the required member. Y ou do
this by replacing the . between a structured variable and a member name with a ->
between the pointer and the member name :

cust_pointer->balance =0 ;

- would set the balance of the customer pointed at by cust_pointer to 0.

Defining your own Types

We have created our own types above, we can use them in our programsto hold
specific kinds of data. However, we have to go through al the rigmarole of
putting struct customer each time we want to declare a variable of that type.
Also, at other pointsin the program we may want to use particular data types
which mean something to us, how about a data type called inches which allows
us to store values of inches. The reasons for doing this are not to make
programs faster or smaller, but to make them easier to understand.

You can create a type using the new C keyword, typedef. Thisisfollowed by
the type you want to declare :

typedef intinches ;

- this creates a new type called inches which is exactly the same asint. This
means that we can put thingsin our program like:

inches width, height ;

- which declareswidth and height asvariables of thistype. Thisisatrivial,
though useful, example. What we really want to do is create a new type which
can hold our bank information:

typedef struct

{
char name [NAME_LENGTH] ;
char address [ADDR_LENGTH] ;
int account ;
int balance ;
int overdraft ;

} customer ;

Structures ? 64

Note that we have moved the name of the type we are creating to the end, and
put thetypdef keyword at the start.

Now we have a new type, called customer which we can use just like any
other type:

customer Hull_Branch [100] ;
customer *New_Customer_Pointer ;

The structures above are used in just the same way as the ones we declared
earlier, but their declaration is much simpler.

Files

When do we use Files?

If you want your program to be properly useful you haveto giveit away of
storing data when it is not running. We know that you can store datain this
way, that is how we have kept all the programs we have created so far, in files.

Files are looked after by the operating system of the computer. What we want to
doisuse C totel the operating system to create files and let us access them.
The good news is that although different operating systems use different ways
tolook after their files, the way in which you manipulate filesin C isthe same
for any computer. We can write a program which creates a file on a PC and
then use that program to create a file on a UNIX system, with no problems.

Streams and Files

C makes use of athing called a stream. A stream isalink between your
program and afile. Data can flow up or down your stream, so that streams can
be used to read and write to files. The stream is the thing that links your
program with the operating system of the computer you are using. The
operating system actually does the work, and the C system you are using will
convert your request to use streams into instructions for the operating system
you are using at the time:

Files ? 65

Operating
System

Your Storage
Program Device
Streams

C needs somewhere to keep track of a particular stream, it needs to be able to
remember where you have got to in the file, what you are using the file for and
s0 on. We do not need to know just what information C stores about each file,
and thisinformation may well be different for each operating system.

C hides all thisfrom us by letting ustalk in terms of a structure called aFILE.
A fileisastructure which holds information about a particular stream. We do
not create or manipulate this structure, that is done by the input and output
routines that come with our version of C. All we haveto doismaintain a
pointer to a FILE, so we can tell the C functions which we want to use. If you
arereally interested, you can find out what a FILE is made of by looking in the
file STDIO.H.

All the functions to manipulate files are defined in the STDIO.H file. They
look very similar to the printf and scanf routines that we have used already. To
remind you that they operate with files, all the file handling function names
begin with "f".

fopen and fclose

Thefirst step in using afileisto open it. Remember that afile can beused in
different ways, for reading from or writing to, or perhaps both. C lets us protect
filesthat we only want to read from by alowing us to open afilein read mode.
This means that we are not allowed to change the contents of the file opened for
reading. You tell the input/output system about the file you want to open by
means of a mode string. This gives information about the type of file you are
working on and the way in which it is to be used.

We open thefile by using the function fopen. This has two parameters; the
name of thefile to be opened and the mode to use. It returns a pointer toa FILE
structure which it creates, for example :

FILE * listing_output ;

FILE * program_input ;

listing_output =fopen ("LISTING", "w") ;
program_input = fopen ("PROGRAM", "r") ;

This opens a couple of files, LISTING is opened for output and PROGRAM is
opened for reading.

See the section on If thefiles do not exist, or there is a problem opening them, fopen returns a special
POINTERS for more about value called NULL. You must always make sure that the open has worked before
NULL. you try to do anything with afile, e.q.

Files ? 66

FILE * listing_output ;
listing_output =fopen ("LISTING", "w") ;
if (listing_output == NULL) {
printf ("1 could not open your output file. \n") ;

}

You can use a string as the name of the file you want to open, so that you could
ask the user for the name of the output file and then open a file with that name.
Note that thefileis opened in the current directory, and that you must observe
the conventions of the computer you are using with regard to file names.

When you open afile for reading, you are assuming that the file exists. If it
does not, fopen will give you an error. When you open a file for writing the
file may or may not exist, and fopen will create one for you if it needsto. This
can lead to problems, what we have hereis avery good way of destroying data
by mistake. When you open an existing file for writing, even if thefileis
enormous, fopen will clobber the contents and start writing at the top of the
file. You do not get awarning, all you get is a sinking feeling as several weeks
work go down thetubes.....

Because | make a point of writing user-proof programs | therefore make sure
that a user really wants to overwrite afile before | let him or her doit. This
meansthat | find out if afile exists before | let the user write all over it. It is
very easy to do this; you simply try to open the file for reading :

FILE * output_file ;
char output_file_name [50] ;
char reply [20] ;
do {
printf ("Give the name of your output file : ") ;
gets (output_file_name) ;
output_file = fopen (output_file_name, "r") ;
if (output_file '= NULL) {
fclose (output_file);
printf ("Overwrite this file 2 (Yor N): ") ;
gets (reply);
if (reply [O] !I="Y"){

continue ;
}
}
} while ((output_file = fopen (output_file_name, "w")) ==
NULL) ;

This snippet of code will loop until the user gives us a file which they say we
can overwrite, and the file is opened successfully. Note the use of the
underrated continue half way down. This causes the loop to start again from
the top, which makes the program ask for another filename. Note also the use of
the function fclose. fclose causesthefile to be closed. It has one parameter,
the file pointer whose file needs to be closed.

Y ou must always close a file when you have finished with it. Thisis
particularly important if you are writing to the file. The operating system does
not switch on the disk drive to write just a single character to the disk, rather it
waits until it has aload to write and then writes thelot in one go. This
increases efficiency, but it does mean that at any time during your output some
of the datais on the disk and therest isin a buffer. Only when you call fclose
is the buffer emptied and the disk written with all the information. If you want
to force the buffer to be emptied onto the disk at any time, and ensure that it is
up to date - but do not want to close thefile, thereisafunction called fflush
which will do thisfor you.

Files ? 67

Mode String

Thefopen function istold how to open the file by means of the mode string.
Thefile opened is marked with the mode which is being used, and then other
file input-output functions look at the mode before doing anything. Thisis how
C stops you from writing to afile which was opened for input. The mode string

can contain the following characters.

Files ? 68

char

w open the file for writing. If the file does not exist it is created. If the file
doesexist it is emptied, and we start with a new one.

Opens using w fail if the operating system is unable to open afile for
output. Thiswould usually be because the disk we are using is write
protected or full, or if you are on a system which can sharefiles, and
somebody e se has connected their program to thefile in question.

r open the filefor reading. Y ou will be unable to write into the file, but
can read from it.

Opensusing r fail if thefile does not exist, or if thefileis protected in
some way which denies us access.

a open thefile for append. If the file exists we are moved to the end of the
file i.e. if we send any data to afile opened for append it will be placed
on the end of thefile. If the file does not exist it is created for us.

Opens using a generally fail for the same reasons as opens using w.

b open thefileas a binary file. Essentially there are two kinds of data on a
computer. Stuff which makes sense to us, and stuff which makes sense
to the machine itself. Stuff which makes senseto usisin the form of
text, i.e. nothing in the file other than letters and numbers etc. Stuff
which makes sense to the computer includes program files and any data
file which needs to be trandated by a program before it can be
understood by people, e.g. spreadsheet data files. Thisdatais called
binary.

If you open afile of type binary you aretelling C that you want it to
send the data exactly as you output it. i.e. it must not perform any

trand ations which make thisfile easier for humans to make sense of.

t open thefileasatext file. Text files only contain printable characters,
i.e. thingsthat you or | would like to see. C will therefore make some
changesto the file when it is output, usually in terms of what happens
at the end of aline of text: some computer systems use two charactersto
mark the end of aline and others only use one.

When atext fileis opened the C input/output routines will perform the
trandation required. If you open a binary file as atext file you will
notice very strange things happen. Remember that the C input/output
system has no way of knowing which kind of file you really want to use,
and so will do the wrong thing if you tell it to.

+ This means that you want to use the file for both reading and writing.
You can put + after r or w. If you put it after ar (read) it means that the
fileis not destroyed if it exists, and that an error is produced if thefile
does not exigt. If you put + after aw (write) it means that the fileis
destroyed if it exists, and a new fileis created if required.

Some exampl es of file open modes and what they mean :

"rb+" Open thefilefor reading and writing in binary mode. If the file does
not exist do not createit. If thefile does exist do not destroy it.

"wt" Open thefile for writing in text mode. If the file does exist destroy it.
If thefile does not exist create one.

Files ? 69

File Functions

As| said above, we can use the functions fprintf and fscanf to communicate
with our files:

fprintf (listing_output, "This is a listing file \n") ;
fscanf (program_input, "%d", &counter) ;

The functions work in exactly the same way as scanf and printf, except that
they use the file linked to the FILE pointer rather than the keyboard and screen.
There arefile versions of all the input and output functions we have covered so
far.

In addition there are some very useful functions which let us save and load
chunks of memory in files. These are very useful when you come to put
structures and arrays into files. You might think that to save an array to disk
you have to write each individual element out using some kind of loop. Y ou can
do this, but there isa much easier way of doing it.

fread and fwrite

You can regard an array, or an array of structured variables, as simply a block
of memory of a particular size. The input/output routines provide you with
routines that you can call to drop a chunk of memory onto adisk filewith a
single function call. However, there is one thing you must remember. If you
want to store blocks of memory in this way the file must be opened as a binary
file. What you are doing is putting a piece of the program memory out on the
disk. You do not know how this memory is organised, and will never want to
look at this, so you must open the file asa binary file. If you want to print or
read text you use the fprintf or scanf functions.

The function fwrite sends a block of memory out to the specified file. To do
thisit needs to know three things; where the memory starts, how much memory
to send, and thefile to send the memory to. The location of the memory isjust a
simple pointer, the destination is a pointer to a FILE which has been opened
previously, the amount of memory to send is given in two parts, the size of each
chunk, and the number of chunks. This might seem rather long winded, but is
actually rather sensible. Consider :

typedef struct

{
char name [30] ;
char address [60] ;
int account ;
int balance ;
int overdraft ;

} customer ;

customer Hull_Branch [100] ;
FILE * Hull_File ;

fwrite (Hull_Branch, sizeof (customer), 100, Hull_File) ;

Thefirst parameter to fwrite isthe pointer to the base of the array of our
customers. The second parameter isthe size of each block to save. We can use
sizeof tofind out the size of the structure. The third parameter is the number
of customer records to store, in this case 100 and the final parameter isthefile

Files ? 70

which we have opened. Note that if we change the number of itemsin the
customer structure this code will still work, because the amount of data saved
changes aswell.

The opposite of fwrite isfread. Thisworksin exactly the same way, but
fetches data from the file and putsit into memory:

fread (Hull_Branch, sizeof (customer), 100, Hull_Data) ;

If you want to check that things worked, these functions return the number of
items that they transferred successfully :

if (fread (Hull_Branch, sizeof (customer), 100, Hull_Data)
<100){

printf ("Not all data has been read!\n\n") ;

The End of the File and Errors

Any file maintained by the operating system has a particular size. Asyou write
afileit ismade bigger until you closeit, so the only problemsthat you have
when sending output to a file are concerned with what happens when you run
out of disk space. We have already seen above that the standard C input/output
functions can tell you how many items they have successfully transferred; you
should always use the value they give back to test that your dealings with files
are going properly.

When you are reading from afileit is useful to be able to check whether or not
you have reached the end, without just failing to read. The function feof can be
used to find out if you have hit theend :

if (feof (input_file)) printf ("BANG! \n") ;

Thisfunction returns the value O if the end of the file has not been reached, and
another valueif it has. It takes a FILE pointer as a parameter.

Note that binary and text files have different methods of determining the end of
afile. If you are having problems because you keep reaching the end of thefile
before you think you should it may be because you have opened thefilein the
wrong mode.

feof hasatwin brother called ferror who can be called to find out if an error
has been caused dueto afile operation. It isworth calling thisif you find that
less items have been transferred by aread or awrite than you expected. The
error number that you get back is specific to the operating system you are using
but it can be used to make program more friendly, for example your program
could tell the difference between "no disk in the drive" and "the disk has
completely failed".

Files ? 71

Memory

Fetching Memory

Sometimes you will come across situations where you do not know when the
program runs exactly how much memory your program will need, for example
you may want the user to tell you how many items he or she wants to store, and
then get a chunk of memory just theright size. Thisisthe most efficient way of
writing your programs, it means that you do not use more resources than
required. When a C program runs, a number of services are made availableto it
by the system it is running on. One of these is a memory manager. The memory
manager 1ooks after what memory is used by who. On a single user system, like
the IBM PC, thisis avery simple affair, either you have the memory or the
system does. On a multi-user system, like UNIX, things are alot more
complicated. Y ou however do not need to worry about this, you simply ask the
memory manager for a chunk of memory and it will giveyou it if thereis
enough left. When you have finished with the memory it isnice if you giveit
back, so that other programs can use it.

Theincludefilealloc.h contains all the memory allocation routines. Y ou can
find out how much memory is l€ft, the size of the biggest block available and
things like that. We are only going to use two, malloc and free.

malloc

This function will try to get a chunk of memory for you. It returns a pointer to
the memory it found, if it could get some. If not it returnsa NULL pointer. You
must always check to make sure that malloc worked before you use the memory
you think you got! malloc has one parameter, the size of the block of memory
you want. Y ou can use sizeof to find out how much memory you need, for
example:

sizeof (int)* 99

- would be enough space for 99 integers. Because malloc returns a pointer to
an item of type void you must use the cast facility to make this compatible with
the type you really want; i.e. if you want to store 99 integers you will have a
pointer to integers which you want to make point at the block of memory which
malloc is going to get for you. The cast will make sure that the compiler does
not produce an error when it sees the assignment, for example:

Memory ? 72

int * buffer ;
buffer = (int *) malloc (sizeof (int)*99);
if (buffer == NULL) {

printf ("No memory!\n") ;

}
else {

do something with the memory...
}

| would access an item in buffer in exactly the same way as | would access
elementsin any block of memory or array, for example buffer [20]. Note that
the effects of going over the end of a block of memory which has been fetched
in thisway as just the same as any other - your program will do stupid things
and then fall over! Note also that you have no idea what isin the memory when
you get it! Do not assumethat it has been emptied of silly values. Thereisa
function, calloc, which you can useif you want all your memory to be cleared
before you get it. Thisfunction is used differently from malloc, so you will
have to look it up.

free

When you have finished with some memory you can give it back to the memory
manager by the use of the free function, for example :

free (buffer);

Thiswould give back the memory we requested above. Note that if wetry to use
this memory again, it may have been used for something el se and so this would
cause big problems. It is good housekeeping to always give back memory which
you have allocated. If you do not you might find that the total amount of
memory available will drop to a point where your program will not run any
more.

The heap

The area of memory which is used for malloc and free is often called the
heap. The nameis apt, thereis no organisation of it so after a while it becomes
amess. This can be a problem; what usually happens s that the heap becomes
fragmented. This meansthat thereis alot of free space, but it is spread al over
the heap. Y our program can then fail to get the memory it wants, not because
thereisinsufficient available, but because thereis not a single chunk of the
required size. Y ou can guard against this happening by not allocating and
freeing lots of little bits of memory repeatedly. Try to work by just grabbing a
chunk and then holding on to it. Do not worry about giving it back if you know
you will need it later.

If you want to be totally selfish, but also bomb proof, grab a very large amount
of memory at the start and then manage it yourself. The advantage of doing it
thisway isthat you can be sure when your program starts that it will have
enough memory to run right to the end.

Memory ? 73

C and Large Programs

Building Large Programs in C

One area where C scores highly isin the development of very large programs.
In C thereis a standard way of performing separate compilation, we have
already seen it in action when we considered how input and output is
performed.

Y ou can split your large C program into several smaller files. Each file will
contain a number of C functions which do some parts of the project. In alarge
development different programmers will be working on particular filesin the
system, thisis quite easy to managein C.

The Compile and Link Process

When you want to build your working program you must compile each source
file and then link them all together. The compiler does not produce the finished
program, instead it produces an intermediate file which contains the machine
code for a particular source file along with details of the names of the variables
used and the names of the functions compiled. Thisis usually called the object
file. C usesthe file extension facility provided by the operating system to tell
the files apart:

MENU.C the .C file extension meansthat thisis a source file which
contains the C program text.

MENU.OBJ the .OBJ file extension means that thisis a file containing the
compiler output for MENU.C. Y ou cannot run this program,
it must be processed by the linker to turn it into a binary
program which will run.

Y ou may have several object files for alarge project, each of
which was produced from a single sourcefile. These arefitted
together, along with the library code, by the linker which
produces.

MENU.EXE the .EXE file extension means that this file contains a binary
program which can be loaded and run by the operating
system.

Note that these language extensions are the ones which MS-DOS uses. If you
use UNIX the extensions are different, but they are used to the same effect.

C and Large Programs ? 74

Source Object
File ‘| P File ‘|

Source Compiler Object Linker
File File
Source,| L Object ,l
File File
Libraries
Final
Program

Thelinker tiesup al the separate files, for example if one program refersto a
function called setup the linker will convert this referenceto acal to setup
defined in another file. Note that if the linker does not find a function called
setup the linking process fails with an error.

You get linker errorsif you refer to functions that do not exist, or define a
function with the same name as one somewhere else. This means that even if
your program compiles OK, it may still have errorsin thetext if you have spelt
afunction incorrectly.

Referring to External Iltems

If you are writing one filewhich is part of alarge system, you will want to refer
to other functions which are not local to your part. (We are already doing this
when we use scanf and printf.) In the case of these routines thereis a standard
file called stdio.h which contains the definitions of external functions we want
to refer to. We can build our own file of such definitionsif we wish, and use
them to refer to distant code. C will et you set up afunction prototype. Thisis
just the top part of a function, analogous to the forward declaration facility of
PASCAL. All the compiler needs to know about an external routineis what it
looks like, i.e. the name, the type of value returned by it and the number and
type of the parameters. That iswhat the prototype givesit:

void increment (int *it);

Thisisa prototype for the increment function we wrote earlier. When C sees
thisit just drops a reference to that function into the object file and then expects
the linker to sort things out when it builds the final program.

If | want to refer to external variablesin my file | must tell C what they are
called and what type they are. | can do this using the extern declaration
modifier:

externinti;

This says to the compiler thereisavariable called i, which is of type integer
defined somewhere else. | do not want you do set up a variable of that name,
just pretend that one exists and et the linker sort things out!

C and Large Programs ? 75

If the project is very large you may have lots of separate files, each containing
functions and variables that you want to share. There is a standard way of
defining these things, we have already used it with the standard input/output
definition file stdio.h. For each filewhich | want to refer to in other ones |
createa".H" file. Thiscontains al the function prototypes and external variable
definitions for other programsto use. If other files want to make use of these
routines they simply have to #include this specification file, i.e.:

MENU.C holds al the menu functions.

MENU.H holds function prototypes and external variables which can be
used to access the menu functions.

Thisisvery useful, someone can use my menu routines without having to look
at the actual code - the".H" file contains all they need to refer to them.

If there were many programmers working on a large project the first things that
they would write would be all the".H" files which define how all the functions
will fit together, each programmer can then go on and write the code to do his
or her particular part and the others can use it without ever seeing it!

The other thing that you can put into your ".H" filesis the design of any data
structures that you are using. If your big project contains customised structures
you might have afile called STRUCTS.H which everyone uses. This means
that you are all using the same copy of the definitions.

The Make Program

Another effect of splitting your project up into a number of separate filesis that
it makes working on the system faster. If you change one of the files you need
only re-compile that file and re-link in all the ones which have not changed.
Thisis much better than having to re-compile everything. However it does
bring another problem, that of keeping all your object files up to date and
making sure that you do not use an out of date file at any time. Furthermore, if
you are using vital ".H" files, you must re-compile those source files which use
them if they are changed.

Doing all thismanually is a bit of a pain, so instead C provides an automated
make facility. This allows you to construct a project file which tells the make
system the names of all the source filesin the system, and which files they
depend on. When you want to create a new version of your program you simply
call the make program which reads this project file and then looks at the
datestamps of all the source and object files. If any source file is newer than the
corresponding object oneit isre-compiled. Furthermore, if afile which has
changed has other ones which depend on it, all the dependent files are re-
compiled too.

Good versions of C have very powerful make systems, they are virtually a
"programming language" which is used to specify how the application isto be
built.

Projects

If you are using an integrated programming environment, for example Borland
C or Microsoft C, you can also create projects, which are similar to make files
but also allow you manage the files visually.

C and Large Programs ? 76

The C Pre-Processor

| have been using #include extensively throughout the examples. Thisisan
instruction which tells the compiler to take the contents of a file and include it
at that particular point in the program. This form of activity is actually handled
by the C pre-processor. We have already looked at the pre-processor in the
context of magic numbers and the #define directive.

The #include Directive

Pre-processor directives are preceded by a# sign and are the only thing on a
line:

#include <stdio.h>

When the pre-processor seesthe #include directiveit looks for afile with the
name following it and opensthat file. It then passes the contents of that fileto
the compiler. At the end of theincludefile it continues with the current source
file. Thefile that you include can also contain #include directives and the pre-
processor will nest them as required.

Note that we have enclosed the file name in <> characters. Enclosing the name
in <> tells the pre-processor to look in a special system include area for thefile,
Thisiswhere standard definition files for all the C run time library routines are
kept. If you want to tell the system to look in the local directory instead you use
"" to enclose the filename;

#include "menu.h"

Conditional Compilation

Y ou can get the pre-processor to selectively pass on parts of your program to
the compiler. Thisis very useful when you are devel oping something and want
to add additional debugging code. If you were using PASCAL you would have
to remove or comment out all the debug statements when you produce the final
version. In C you can just tell the pre-processor not to pass particular parts of
the program to the compiler.

The decision is made depending on whether a particular symbol has been
defined previoudly, for example:

#ifdef debug
printf ("Intermediate value %d \n", i) ;
#endif

If debug had been defined previoudly the printf statement is passed to the
compiler. If this symbol does not exist all the text between the #ifdef and the
#endif isremoved by the pre-processor and the compiler never seesit. This
means that | can turn all my debug statements on simply by typing:

#define debug 1

- at the beginning of the program and then rebuilding it. Note that the
trandation that | giveto debug is not important, merely the fact that it has
been defined.

You can add an el se part if you wish:

C and Large Programs ? 77

#ifdef friendly

printf ("Sorry, you made a mistake.") ;
#else

printf ("You idiot!") ;

#endif

Remember that these decisions are not made when the program runs, they
actually control what the program actually contains.

Another popular use for conditional compilation is the building of code which
can be customised for various different machines. A particular compiler often
has a number of words pre-defined. Y our source can check for these and then
include code to customise the program for that particular version. This makes
writing portable code a lot easier.

A Sample Project

This brings together some of the things | have been talking about above. We
will use all of the techniques to make alarge program out of a number of small
files. Wewill also ook at good design techniques and decisions you make when
starting the project:

The Problem

We arewriting a program that will keep track of orders. The data we want to
storeis:

the name of the customer

the address of the customer

7”?
7”?
?? the customer reference number
?? the name of the item purchased
»

the reference number of the item purchased
The program should allow ordersto be entered, edited, search for and printed.

The Data Structure

By referring to the list above we come up with the following data structure to
hold order information:

struct sale_record
{
char customer_name [NAME_LENGTH] ;
char customer_address [ADDRESS LENGTH] ;
int customer_ref ;
int item_name [NAME_LENGTH] ;
intitem_ref ;

b
Our program is now concerned with the management of data held in these
records.
Wewill create an array of these that will serve as the main data storage for our
application:

#define DATABASE_LENGTH 50
struct sale_record sales [DATABASE _LENGTH] ;

C and Large Programs ? 78

Program Files

Once we have our data structure designed, we can start worrying about the
programs that will manipulateit.

Rather than put all the code into a single file, we decide to spread the system
over three sourcefiles:

?? user menu and displays - menu.c
?? data storage and management - data.c
?? dataprinting - print.c

Each source filewill contain functions concerned with that part of the system,
and the other files may make use of these. | have decided to put the main
function in the menu.c sourcefile. Taking each sourcefilein turn:

data.h & data.c

The data portion of the system will look after all the storage and retrieval of
data for our system. The data.h file must give enough information about the
data storage organisation and facilities so that other source files can manage
data.

Note that in order to maintain consistency | will #include the data.h filein
the source file data.c. | do this so that the compiler can check for consistency
between the function prototypesthat | tell the other files about and the functions
themselvesin data.c. Thisdoes lead to a problem however in that some of the
itemsin data.h will be extern declarations of variables which other files need
touse. If | just include data.h in data.c | will refer to a variable as both extern
and locally declared, leading to compiler errors.

To get around this | use conditional compilation. At the beginning of thefile
data.c | havethefollowing line:

#define data

Thisisthen used inside data.h sothat | only declare external variablesif | am
not inside data.c. | also use other tricks with #define to make sure that a
given #include fileisonly included once, you can work out how these are used
for yoursdlf.

The complete #include filelooks like this:

/* include file for database management */
/* handle multiple includes */

#ifndef data_available

/* set the lengths of our database items */

#define NAME_LENGTH 100
#define ADDRESS_LENGTH 500

/* define our database structure */

struct sale_record

{
char customer_name [NAME_LENGTH] ;
char customer_address [ADDRESS LENGTH] ;
int customer_ref ;

C and Large Programs ? 79

int item_name [NAME_LENGTH] ;
intitem_ref ;
b
/* set the length of our database */
#define DATABASE_LENGTH 50
/* make an external reference to the database if we are not
inside data.c */
#ifndef data
extern struct sale_record sales [DATABASE_LENGTH] ;
#endif
/* Now put in the data management functions... */

/* values for the functions to return */

#define TRUE 1
#define FALSE O

intis_empty (struct sale_record * this_record) ;
void clear_record (struct sale_record * this_record) ;

#define STORED_OK 0
#define NO_ROOM_IN_DATABASE 1

int store_record (struct sale_record * this_record) ;
struct save_record * find_record (struct sale_record * pattern) ;
#define SAVED_OK 0

#define SAVE_FILE_OPEN_FAILED 1

#define SAVE_FILE_FULL 2

int save_records (void) ;

#define LOADED_OK 0

#define LOAD_FILE_OPEN_FAILED 1

#define LOAD_FILE_SHORT 2

int load_records (void) ;

/* tell other include files that structures are available */

#define data_available

#endif

Note that the functions given are function prototypes, which describe what the
functions are called and what they do. They are not the functions themselves.
Taking some of the functionsin detail:

C and Large Programs ? 80

| have created TRUE and FALSE so that functions which return something
(for example whether they worked or not) have set values which can be picked
up and used. If welook at one of the functionsin detail::

intis_empty (struct sale_record * this_record) ;

This function returns TRUE or FALSE. If the record which this_record
points at is empty, the function returns TRUE. If not it returns FALSE.

Note that the design of the name of the function would tend to et you know
what it does, thisis an example of self-documenting code.

The thing you may have bother with is:

struct sale_record * this_record

This describes a pointer called this_record that is alowed to point at sale
records. Thisway we can feed the function sale recordsto look at, for example;

struct sale_record x ;

if (is_empty (&x)==TRUE) {
printf (“x is empty\n”);

}

If we want to look at one of the entriesin our array we would put:

if (is_empty (&sales [25]) ==TRUE) {
printf (“empty\n”);
}

We will use the idea of pointers as parametersin alot of the following
functions. Giving a pointer to the thing we want to useis good for two reasons:

?? It alows the object to be changed by the function

?? It reduces the amount of data passed into the function, i.e. only the address
of the object is passed, not the object itsalf

void clear_record (struct sale_record * this_record) ;

This function is used to make a record empty. We have to agree on what
congtitutes and empty record, perhaps we say that arecord with an empty
customer name is an empty one. Whatever method we use, we must make sure
that theis_empty function agrees that thisis empty. Note that this function
doesn’t return anything, because | can’t think of away in which it can fail (in
fact | can - seeif you can aswell)

int store_record (struct sale_record * this_record) ;

| am implementing the database in such away that the users of the data.c
program don’t need to know how everything is stored. They just give the data
routings a pointer to arecord that needs to be stored, and it goes ahead and
storesit.

Note that this function can return whether or not the store request worked OK. |
have #defined a couple of values to alow the function to indicate whether or
not it worked.

struct find_record * find_record (struct sale_record * pattern) ;

This function searches for arecord that matches a pattern given to it. We must
congtruct the pattern and then we can usefind_record to match thisto each
entry in the database in turn.

We will have to document how the pattern works, for example if there will be
wild cards etc. If a match isfound the function returns a pointer to the record. If
amatch is not found the function returns the NULL pointer.

C and Large Programs ? 81

int save_records (void) ;

This function is called when the database needs to be saved from memory into a
file. Note that there are some error return values for this function to use.

int load_records (void) ;

This function is called when the database needs to be loaded into memory from
afile. Note that there are some error return values for this function to use.

print.c & print.h

This st of functions manages the printing of the itemsin the database. Note
that we use conditional compilation tricks to make sure that the database
includefileis around so that we can useit, and that we don’t set things up if
thereis no need.

/* just define the print functions which we use */
#ifndef print_available

/* we will be using data structures, include for these if needed
*/

#ifndef data_available
#include "data.h"
#endif

#define PRINTED_OK 0
#define PRINT_FAILED 1

int print_record (struct sale_record * this_record) ;

#define DISPLAYED_OK 0
#define DISPLAY_FAILED 1

int display_record (struct sale_record * this_record) ;
#define print_available

#endif

Y ou can probably figure out what each of the functions does, and what it
returnsin the way of error messages from the include file above.

menu.cC

Thisisthe main program. It uses the facilities provided by print and data to
deliver what the user wants. Notethat | don’t have amenu.h file because no
file makes use of functionsin menu.c (this could changeif | designed it
diferently)

/¥ main menu file */
#include <stdio.h>

#include <stdlib.h>
#include <conio.h>

#include "data.h"

C and Large Programs ? 82

#include "print.h"

int build_query (struct sale_record * search_record)

{

return TRUE ;

}

int read_record (struct sale_record * this_record)

{

return TRUE ;

}

void main (void)

{

char command ;
int finished_program = FALSE ;

if (load_records () == FALSE) {

}
do {

exit (1);

printf ("Main Menu\n\n"
"1: Add Record\n"
"2 : Delete Record\n"
"3: Search Records\n"
"4 : Edit Record\n"
"5 : Print Record\n"
"6 : Exit Program\n\n”
"Press command key : ");

command = getche () ;
switch (command) {

case 'l': /* Add Record */

{
struct sale_record temp_record ;
if (read_record (&temp_record) == TRUE) {
store_record (&temp_record) ;
}
}
break ;

case '2': [* Delete Record */
break ;

case '3': [* Search Records */
break ;

case '4' : [* Edit Record */

C and Large Programs ? 83

break ;

case'5' : /* Print Records */
break ;

case '6': /[* Quit the program */

finished_program = TRUE ;
break ;

default : /* invalid command */

printf ("Invalid command \n\n") ;
break ;

}
} while (finished_program == FALSE) ;

save_records () ;

}

Please remember that thisis probably not the best way to solve the given
problem, it is simply the way that | do it!

The Most Important Bit!

Thisisthe most important bit!

When you do your top level design, designing data structures, splitting the
facilities across several source files and creating functions and values that they
return it is very important that you document all thiswork. There should be an
implementation bible that describes what each source file does and what the
functions inside the file do. The best way to write thisis as the work progresses.
It should be made available to all the people working on the project (even if
thereisjust you!) and it will form the first component of the software
documentation, a“road map” of the project.

Later in the course we will look at formal design methods, for now | just want
to make sure that you understand the importance of these aspects of software
writing. When you solve a problem for a customer you are not just writing a
program, you are creating a system which will solve the problem, and thiswill
include consideration of the overall design and testing of the product you are
going to create. It is very important that you take this “ systems approach” from
the beginning of your programming career!

C and Large Programs ? 84

Glossary of Terms

assembly language

Assembly language is the textual way of describing a machine code program.
Each individual machine code instruction is represented by a letter sequence
called a mnemonic. A program called an assembler converts the assembly
language into machine code. Y ou can mix assembler and compiler output by
linking together their object files. Y ou write assembler programs when you
need great speed, or want to talk to particular pieces of hardware. Assembly
language is slow to write and non-portable.

call

When you want to use a function, you call it. When afunction is called the
thread of execution switches to that function, starting at the first statement in its
body. When the end of the function, or the return statement, is reached the
thread of execution returns to the statement immediately following the function
cal.

compiler

A compiler takes a source file and makes sense of it. It isthefirst stagein the
conversion of a program into machine code. The compiler will produce an
object file which islinked in with other object files and library files to produce
the machine code program which is run. Writing compilersis a specialised
busines, they used to be written in assembly language but are now constructed
in high level languages (like C!). A compiler isalarge program which is
specially written for a particular computer and programming language. Most
compilerswork in several phases. The first phase, the pre-processor, takes the
source which the user haswritten and then performs all the compiler directives,
producing a stream of program source which is fed to the "parser” which
ensures that the source adheres to the grammar of the programming language
in use. Thefinal phaseisthe code generator, which produces the object file
which islater linked by the linker.

directive

A directiveis a command of some kind. In C thisusually refersto the pre-
processor, which acts on these to get particular effects. Some assemblers also
support directives which can change the way they work, but these are not the
same astheonesused in C.

Introduction to C Programming Glossary of Terms ? 93

format string

The formatted print and scan functions, for example scanf and printf, need to
know how to format their output. To tell them the layout we use the format
string. It contains characters which are to be transferred - for example hello,
place markers for values - for example %i for an integer, and control sequences
for layout - \n for anewline.

Functional Design Specification

Large software devel opments follow a particular path, from the initial meeting
right up to when the product is handed over. The precise path followed depends
on the nature of the job and the techniquesin use at the devel oper; however, all
developments must start with a description of what the system isto do. Thisis
the most crucial item in the whole project, and is often called the Functional
Design Specification, or FDS.

machine code

Machine Code is the language which the processor of the computer actually
understands. It contains a number of very simple operations, for example move
an item from the processor into memory, or add one to an item in the processor.
Each particular range of computer processors has its own specific machine
code, which means that machine code written for one kind of machine cannot
be easily used on ancther.

object file

The object file contains the output of a compiler or an assembler and the names
and types of variables used in that source file which the object was created
from. It also contains references to things which were referred to in the source
file but which were not present, for example library functions and external
variables. The object file is acted on by the linker.

portable

When applied to computer software, the more portable something isthe easier it
isto move it onto a different type of computer. Computers contain different
kinds of processors and operating systems which can only run programs
specifically written for them. A portable application is one which can be
transferred to a new processor or operating system with relative ease. High
Level languages tend to be portable, machine code is much harder to transfer.

source file

Y ou prepare a source file with atext editor of somekind. It is text which you
want to pass through an assembler or a compiler to produce an object file for
linking

test harness

The test harness will contain simulations of those portions of the input and
output which the system being tested will use. Y ou put your program into a test
harness and then the program thinksit isin the completed system. A test
harnessis very useful when debugging as it removes the need for the complete
system (for example atrawler!) when testing.

Introduction to C Programming Glossary of Terms ? 94

Index

#

#define 27
#ifdef 76
#include 76

&
& 23,42

1* 24

114

{
{13

A

aloc.h 71
Arnold Schwartznegger 56
arrays 46
as memory blocks 72
declaration 47
dimensions 50
element 47
sorting 47
strings 56
subscript 47
subscripts 46
types 49
assignments 35

B

block 27

bomb proof input 60
brace 13, 17

break 31

switch 54
Bubble Sort 48

C

C8

caloc 72

case 54

casting 22

chain saw 8

comments 24

compile 73

compiler 9

computer 1
data processing 2
embedded system 3
hardware & software 1
program 3
programming 4

condition 25

continue 32

D

data 2, 18

default 55

defensive programming 58
delimiter 15

E

expressions 21
data types 22
operands 21
operators 21

F

fclose 66
feof 70
ferror 70
fflush 67
file extensions 73
files 65
binary data 68
block transfers 69
end of file 70
errors 70
FILE 65
mode string 67
NULL 66
opening and closing 66
overwriting 66
reading and writing 69
streams 65
text data 68
fopen 66
format string 16

Index ? 95

fprintf 69

Frank Sinatra 47

fread 69

free 72

fridge 1

fscanf 69

functions 10, 37
body 37
calling 38
heading 37
local variables 38
main 10
parameters 14, 37
pointers 43
prototypes 74
return 38
dtatic variables 44

fwrite 69

G

getchar 60

gets 60

global variables 38
gozzinta 15

if 25
information 2

L

link 73
linker 74
local variables 38
loops 29
break 31
continue 32
do - while 29
for 30
while 30

M

make 75
malloc 71
memory 71
allocating 71
heap 72
returning to the system 72

N

null
strings 56

O

operands 21
operating system 2
operators 21
combining logical 26
overloading 43
priority 21
relational 25
unary 34

P

parameter 14
parenthesis 16
plumber 4
pointers 15, 23, 41
de-reference 42
functions 43
null 43
strings 56
to structures 63
portable 11
pre-processor 10, 75
#define 27
conditional compliation 76
include 12, 76
printf 16, 36
priority 21
program
main 13
program flow 24
programmer 1
programming languages 8
project files 75
punctuation 17

R
return 38

S

scanf 14, 23
scope 38
example 39
semicolon 14
sizeof 63
sorting 47
source file 10
sscanf 61
Star Trek 2
statements 10
returning values 35
dtatic variables 44
stdio.h 12
stremp 59
strepy 59

Index ? 96

strings 55
functions 58
pointers 56

program source 56
reading & printing 59

terminator 56
strlen 59
structures 61

accessing 62

defining 62

pointers 63
subscripts 46
switch 54

break 54

case 54

T

threads 24
typedef 64

U

user 1

\%

variables 10, 18
arrays 46
assignment 20
declaring 18
external 74
float 13
global 38
list 13
local 38, 39
names 20
pointers 41
scope 38
dtatic 44
strings 55
structures 61
typedef 64
types 18

void 13

W
whitespace 59

Index ? 97

