
School of Information Technology and Electrical Engineering
The University of Queensland

C
S

S
E

2
3
1
0

7
2
3
1

C
om

pu
te

r
S

ys
te

m
s

P
rin

ci
pl

es
 +

P

ro
gr

am
m

in
g

Week 12

File systems

2
C

S
S

E
2
3
1
0

7
2
3
1

Outline

File Systems and File I/O
– Files
– Directories
– File Operations
– File Systems

3

C
S

S
E

2
3
1
0

7
2
3
1

References

File Systems
– See Glass & Ables – pages 572-584, 606-616
– Credits:

• E. Berger, University of Massachusetts, Amherst
• Silberschatz et. al, “Operating Systems concepts”
• Tanenbaum, “Modern Operating Systems”
• Rochkind, “Advanced UNIX programming”

4

C
S

S
E

2
3
1
0

7
2
3
1

Recall from Lecture One

Operating Systems provide abstractions to
– make computer hardware easier to use

• for user, programmer, system administrator…

– manage hardware resources

Example abstractions

Abstraction Resource

Processes CPU time

Virtual Memory Memory

Files Disk space

5

C
S

S
E

2
3
1
0

7
2
3
1

Files

Computers can store information on
storage media (secondary storage)

– magnetic and optical disks, tape

Operating system maps files to physical
devices

A file is a named collection of related
information, can be

– structured (sequence of records)
– unstructured (sequence of bytes)

6

C
S

S
E

2
3
1
0

7
2
3
1

File Structure

– Files can also contain multiple streams.

Who decides?
– Operating System? – Sometimes
– Application Program - Usually

Most OSs consider files to be linear
sequences of bytes

– e.g. UNIX, Windows etc
– Up to each program to know what format the

file is in

Files can be programs or data

7

C
S

S
E

2
3
1
0

7
2
3
1

File Attributes

Each file usually associated with attributes or
meta-data

– Name – human readable
– Type

• Some systems determine this from name or contents
of file

– Location - where is it on the device?
– Size
– Protection – who has what permissions?
– Owner
– Time and date information

Particular attributes stored can vary by OS
– More precisely – can vary by file system

8
C

S
S

E
2
3
1
0

7
2
3
1

File Types

How is type of file determined?
Windows

– Based on filename extension

Macintosh (HFS)
– 4 character type stored as meta-data

• e.g. MSWD is “Microsoft Word”

UNIX
– Contents of first part of file

• magic number

– See /etc/magic and file(1)

9

C
S

S
E

2
3
1
0

7
2
3
1

Directories

Need a method of retrieving files from disk!
– OS (file system) uses numbers, e.g.

• index number, or
• sector number

– People prefer names
– OS provides directory to map names to file

numbers
• Example /etc/services on moss has index number

2883627 on its file system.

A file system is a collection of files plus a
directory structure

– Variety of directory structures possible

10

C
S

S
E

2
3
1
0

7
2
3
1

10

Flat File Systems

One level directory
– One namespace for entire disk, every name unique

• Directory contains (name, index) pairs
– Used by Apple, CP/M, DOS 1.0, first MacOS

Two level directories
– Separate directories for each user
– OK for floppies, but not scalable

11

C
S

S
E

2
3
1
0

7
2
3
1

11

Hierarchical File Systems

Tree-structured
name space

– Used by all
modern
operating
systems

12

C
S

S
E

2
3
1
0

7
2
3
1

Hierarchical File Systems
(cont.)

Top level
– root directory (UNIX)
– drive names (Windows)
– volume names (MacOS – not Mac OS X)

Tree-structured name space
– Directory becomes special file on disk

• Marked by special flag bit
– User programs may read directories, but only

system may manipulate directories
– Each directory contains (name, index number)

pairs
• names need not be unique in whole file system
• names must be unique in that directory

13

C
S

S
E

2
3
1
0

7
2
3
1

Pathnames

Processes
– have concept of current (or working)

directory
– can change their working directory

• How do you specify a directory name?

Absolute and relative pathnames
– Absolute name – will always find the file

• Name given relative to the root directory

– Relative name
• Name relative to the current directory

14
C

S
S

E
2
3
1
0

7
2
3
1

14

Acyclic Graph Directory
Structure

Have shared subdirectories/files
Not a tree
UNIX uses
links
What if
delete
shared file/
directory?

More later

15

C
S

S
E

2
3
1
0

7
2
3
1

15

General Graph Directory

What happens if allow cycles?
– Management becomes more difficult
– Most OSs disallow this

16

C
S

S
E

2
3
1
0

7
2
3
1

Mounting File Systems

File systems must be mounted before use
– Complete directory structure may actually be

built out of multiple file systems

Mounting involves associating a file system
device (e.g. disk partition) with a mount point

– Mount point is the pathname at which the root
of the mounted file system appears

– Windows – drive letters
– Unix – more arbitrary mount points

17

C
S

S
E

2
3
1
0

7
2
3
1

Mount point example

Existing

Unmounted partition

18

C
S

S
E

2
3
1
0

7
2
3
1

18

Mount point example (cont.)

After mounting
partition at /users

– /users is mount
point

Original /users
contents are
obscured

– Some OSs prohibit
mount over non-
empty directory

19

C
S

S
E

2
3
1
0

7
2
3
1

Break

20
C

S
S

E
2
3
1
0

7
2
3
1

Links in UNIX

Hard links (UNIX: ln command)
– Allows multiple links to single file
– Example: “ln A B”:

• initially: A -> file number 100
• after: A, B -> file number 100

– i.e. multiple names for the same file
– Can’t link across file systems
– OS maintains reference counts

• Deletes file only after last link to it is deleted

Problem: users could create circular links with
directories

– Reference counting can’t reclaim cycles
Solution: can’t hard link directories
Agave example …

21

C
S

S
E

2
3
1
0

7
2
3
1

Links in UNIX (cont.)

Soft (symbolic) links (UNIX: ln -s)
– Makes symbolic pointer from one file to

another
– “ln -s A B”:

• Initially, A -> file #100
• After, A -> file #100, B -> A

– Removing B does not affect A
– Removing A: dangling pointer

Problem: Circular links can cause infinite loops
– E.g., list all files in directory & its

subdirectories
Shortcuts in Windows are a similar concept

22

C
S

S
E

2
3
1
0

7
2
3
1

File Access

Sequential
– Bytes read/written in order
– Very common access method

Random
– Jump to any point in file

23

C
S

S
E

2
3
1
0

7
2
3
1

Directory Operations

Create directory (mkdir)

Delete directory (rmdir)

Open, read, close directory (getdents)

Rename directory (rename)

Link (link)

Unlink (unlink)

Get current directory (getcwd)

Change directory (chdir)

24

C
S

S
E

2
3
1
0

7
2
3
1

Protection

OS must allow users to control access to files
– Grant or deny access to file operations

depending on protection information
Access lists and groups (Windows - NTFS)

– Access list for each file with user name and
access type

– Lists can become large & tedious to maintain
Access control bits (UNIX)

– Three categories of user (user, group, others)
– Three types of access privileges (read, write,

execute)
– One bit per operation (111101000 = rwxr-x---)

Examples…

25

C
S

S
E

2
3
1
0

7
2
3
1

File Sharing

Sharing may occur over a network
Distributed File System

– Remote file system directories are visible locally, e.g. via
some mount point

– NFS (Sun’s Network File System)
• Widely used in UNIX world

– CIFS (Common Internet File System)
• Windows

Some systems use different naming convention for network
pathnames

– UNC (Uniform Naming Convention) – Windows
• \\servername\sharename\pathname\...

– DCE DFS
• /…/servername/pathname/…

26
C

S
S

E
2
3
1
0

7
2
3
1

Disk Drives

Consist of multiple rotating
disks

– Each disk contains
concentric tracks

– Each track consists of
multiple sectors

• Bits laid out serially
– Sector typically 512 bytes

(plus preamble, error
correction etc)

27

C
S

S
E

2
3
1
0

7
2
3
1

Disk Drives

Read/write head per surface (usually)
– Heads move together

• Seek to a cylinder of tracks

Key fact for our purposes:
– Reads and writes occur in terms of whole sectors
– Minimum unit of transfer

28

C
S

S
E

2
3
1
0

7
2
3
1

Cost of Disk Operations

In addition to CPU time to start disk operation:

Latency: time to initiate disk transfer
– Seek time: time to position head over correct

cylinder
– Rotational time: time for correct sector to

rotate until under disk head

In most cases, disk latency will be some
number of milliseconds

Bandwidth: rate of I/O transfer of sectors once
initiated

29

C
S

S
E

2
3
1
0

7
2
3
1

File Systems and Disks

Not necessarily a one-to-one correspondence
File system can span one or more disks

– Does not apply for some file system types
A disk can hold more than one file system

File
System
A

File
System
B

Disk 1
File
System
C

Disk 2

Disk 3

…

… 30

C
S

S
E

2
3
1
0

7
2
3
1

File Organisation on Disk

File system maps file blocks to disk
location

– e.g. file 0, block 0 maps to cylinder 0, platter
(head) 0, sector 0

File block may not be same size as disk
sector

How do we best lay out files on disk?

31

C
S

S
E

2
3
1
0

7
2
3
1

File Systems

Hundreds of types of file system exist
Common ones:

– Windows
• NTFS, FAT, FAT32

– Solaris
• UFS (Unix File System), ZFS

– Linux
• ext2, ReiserFS, ext3, ext4, btrfs

– BSD
• FFS (Fast file system)

– Optical disks
• ISO9660, Joliet extensions, UDF

32
C

S
S

E
2
3
1
0

7
2
3
1

On-Disk Data Structures

Most systems fit following profile:
– Most files are small
– Most disk space taken up by large files
– I/O operations target both small & large

Per-file cost must be low, but large files must
also have good performance
Some possible structures:

– Contiguous allocation
– Linked Files
– Indexed Files

But first… fragmentation

33

C
S

S
E

2
3
1
0

7
2
3
1

Fragmentation

Internal Fragmentation
– Space allocated but not used

• E.g. allocations of 4kbyte disk blocks – a 5kbyte file
will be allocated 2 blocks (8kbytes) – 3kbytes wasted

External Fragmentation
– Unallocated spaces are

• too small to be useful, or
• too spread out

Figure to be drawn in class

34

C
S

S
E

2
3
1
0

7
2
3
1

34

35

C
S

S
E

2
3
1
0

7
2
3
1

Contiguous Allocation

Operating system maintains ordered list
of free disk blocks

OS allocates contiguous chunk of free
blocks when it creates a file

– Only need to store start location & size in file
index

36

C
S

S
E

2
3
1
0

7
2
3
1

Contiguous Allocation:
Pros & Cons

Advantages
– Simple
– Fast – minimises disk seeks

Disadvantages
– May not know size of file at creation time
– Changing file sizes – may not be possible to

extend without copying
– Fragmentation – may be hard to find space for a

new file

Examples: IBM OS/360, write-only disks, early
PCs

37

C
S

S
E

2
3
1
0

7
2
3
1

37

Linked Files

Maintain list of all free sectors/blocks

In directory entry, keep pointer to first
sector/block

In each sector, keep pointer to next sector

Directory entry

38
C

S
S

E
2
3
1
0

7
2
3
1

Linked Files: Pros & Cons

Advantages
– No external fragmentation
– Easily handles file size changes
– Good for sequential access

Disadvantages:
– Random access is slow – have to follow the chain of

pointers
• Number of disk seeks required may be large

– Space taken by pointers
• Can use clusters of disk blocks and have one pointer per

cluster (but increases internal fragmentation)

Variation: FAT (File Allocation Table)

39

C
S

S
E

2
3
1
0

7
2
3
1

39

FAT

Doesn’t store pointers in each
block, instead has a table (at
start of disk) with one entry per
disk block specifying

– If block is free
– If block used, next block in

file (or end-of-file)

Can result in large number of
disk seeks unless table is
cached

Random access performance is
improved

40

C
S

S
E

2
3
1
0

7
2
3
1

Indexed Files

OS keeps array of block pointers
for each file

User or OS declares maximum
length of file created

OS allocates array (index block) to
hold pointers to all blocks when it
creates file

– But allocates blocks themselves
only on demand

OS fills pointers as it allocates
blocks

Directory
entry

41

C
S

S
E

2
3
1
0

7
2
3
1

41

Index Allocation Example

42

C
S

S
E

2
3
1
0

7
2
3
1

Indexed Files: Pros & Cons

Advantages
– Sequential & random access: easy

• i.e. quick to determine which disk block to read next

Disadvantages
– Sets maximum file size
– Lots of seeks

• Data blocks may be spread out over disk

Many variations possible

43

C
S

S
E

2
3
1
0

7
2
3
1

Indexed Files - Variations

Linked Index Blocks
– Index block points to first N blocks in file
– If file grows beyond this, add another index block and

link to it from first, etc

Multilevel Index
– First level index block points to a set of second level

index blocks (which point to the disk blocks
themselves)

– Allocate second level index blocks only as necessary

Combined approach
– This is how most UNIX file systems do it, e.g….

44
C

S
S

E
2
3
1
0

7
2
3
1

44

UNIX file system example

Each directory entry contains
14 block pointers
First 12 pointers point to data
blocks
13th pointer: one indirection

– Points to block of 1024
pointers to 1024 more
data blocks

14th pointer: two indirections
– Points to block of

pointers to indirect blocks
Used in BSD UNIX 4.3
Variants used in other UNIXes

– Directory entries are
i-nodes (index nodes)

Directory
entry

45

C
S

S
E

2
3
1
0

7
2
3
1

Multilevel Indexed Files:
Pros & Cons

Advantages
– Simple to implement
– Supports incremental file growth
– Small files?

Disadvantages
– Indirect access: inefficient for random access to

very large files
– Lots of seeks (data not contiguous)

Is file size bounded?

46

C
S

S
E

2
3
1
0

7
2
3
1

Other Issues

Block sizes

Free space management

Journalling

Sparse allocation

Not issues we consider in CSSE2310

