
The University of Queensland
School of ITEE

1

CSSE2310 / CSSE7231
Semester One, 2012

School of Information Technology and Electrical Engineering
The University of Queensland

Week 11 - Friday

Network Programming
(cont.)

Outline

l  C Network Programming
n Concurrent servers – single process (select()

function)
n UDP Example

l  Credits:
n Glass and Ables, “UNIX for Programmers and Users”
n Bryant and O’Halloran, “Computer Systems: A

Programmer’s Perspective”
n Rochkind, “Advanced UNIX Programming”
n  Tanenbaum, “Computer Networks”

2

3

Iterative Servers

l  Iterative servers process one request at a
time

client 1" server" client 2"

call connect call accept!
ret connect

ret accept!

call connect

call read
write

ret read
close

close
call accept!

ret connect

call read

ret read

close

write

ret accept!

close

Client 2 has to
wait until server

deals with client 1

4

3 Basic Mechanisms for
Creating Concurrent Flows

1.  Processes
n  Kernel automatically interleaves multiple logical flows
n  Each flow has its own private address space

2.  Threads
n  Kernel automatically interleaves multiple logical flows
n  Each flow shares the same address space

3.  I/O multiplexing with select()
n  User manually interleaves multiple logical flows
n  Each flow shares the same address space
n  Popular for high-performance server designs

5

Event-Based Concurrent Servers
Using I/O Multiplexing

l  Maintain a set of connected descriptors and service each
as new data arrives

l  Repeat the following forever:
n  Use the Unix select() function to block until:

(a) New connection request arrives on the listening
descriptor, or

(b) New data arrives on an existing connected descriptor
n  If (a), add the new connection to the pool of connections
n  If (b), read any available data from the connection

l Close connection on EOF and remove it from the set

6

The select() Function

l  select() sleeps until one or more file descriptors in the
set readset are ready for reading

l  readset
n  Opaque bit vector (max FD_SETSIZE bits) that indicates

membership in a descriptor set
n  If bit k is 1, descriptor k is a member of the descriptor set

l  maxfdp1
n  Maximum descriptor in descriptor set plus 1
n  Tests descriptors 0, 1, 2, ..., maxfdp1 - 1 for set membership

l  select() returns number of ready descriptors and sets
each bit of readset to indicate the ready status of
corresponding descriptor

#include <sys/select.h>

int select(int maxfdp1, fd_set *readset, NULL, NULL, NULL);

The University of Queensland
School of ITEE

2

CSSE2310 / CSSE7231
Semester One, 2012

7

Macros for Manipulating
Set Descriptors

l void FD_ZERO(fd_set *fdset);
n Turn off all bits in fdset

l void FD_SET(int fd, fd_set *fdset);
n Turn on bit fd in fdset

l void FD_CLR(int fd, fd_set *fdset);
n Turn off bit fd in fdset

l int FD_ISSET(int fd, *fdset);
n Is bit fd in fdset turned on?

8

Sample select() Server Code

l To be discussed in class

Other options

l poll()
n Does the same thing as select, but

different interface
l pselect(), ppoll()

n Can wait for a signal also

9

UDP Example Code

l To be discussed in class

11

12

Pro and Cons of Event-
Based Designs

+ One logical control flow
+ Can single-step with a debugger
+ No process or thread control overhead
– More complex to code than process or

thread-based designs
– Can be vulnerable to denial of service

attack
n How?

13

Resources

l  Beej's Guide to Network Programming
n  http://beej.us/guide/bgnet/ (section 7.2)

l  Manual pages
n  On moss: man <name> or man –s 2 <name>
n where <name> is socket, bind, connect, listen, accept,

recv, send, …
n  Try man select_tut

l  Glass & Ables, “UNIX for Programmers and Users”
l  Rochkind, “Advanced UNIX Programming”
l  Bryant and O’Halloran, “Computer Systems: A

Programmer’s Perspective”
l  Other UNIX Programming books…

n  See Reference text list in course profile

