The University of Queensland CSSE2310 / CSSE7231
School of ITEE Semester One, 2012

A132
& Outline
Sg Week 10 - Friday |
A ® C Network Programming

%\E’a m Concurrent servers — multi process
m Concurrent servers — multi thread

Network Programming o Credits:
(Cont.) ® Glass and Ables, “UNIX for Programmers and
i Users”

® Bryant and O’Halloran, “"Computer Systems: A
Programmer’s Perspective”

® Rochkind, “Advanced UNIX Programming”

School of Information Technology and Electrical Engineering B Tanenbaum, “Computer Networks”
The University of Queensland

3 Basic Mechanisms for

Iterative Servers Creating Concurrent Flows

® Iterative servers process one request at a 1. Processes
time m Kernel automatically interleaves multiple logical flows
client 1 server client 2 ® Each flow has its own private address space
2. Threads

call connect ...| call connect

m Kernel automatically interleaves multiple logical flows
ret accept < Client 2 has to ® Each flow shares the same address space

ret connect

call read

write wait until server 3. 1/0 multi i :
. ultiplexing with select
ret read close deals with client 1 / P g . select () . .
close ® User manually interleaves multiple logical flows

call accept - | zet connect B Each flow shares the same address space

Tet accept [« call read = Popular for high-performance server designs
write ret read
3 4
Process-Based Process-Based
Concurrent Server 7 Concurrent Server (cont.)
. /* parent must reap children! - set up handler */

/* main server loop */
while (1) {
connfd = accept(listenfd, (struct sockaddr *) &clientaddr,
sclientlen));

struct sigaction sa;

sa.sa_handler = reapchildren;

sa.sa_flags = SA_RESTART | SA NOCLDSTOP;

. sigaction (SIGCHLD, &sa, NULL);...

if (fork() == 0) {
close(listenfd); /* child closes its listening socket */
... /* Read data from connfd, process, write data etc. */
close (connfd) ; /* child is done with this client */
exit(0); /* child exits */

}

close (connfd) ; /* parent must close connected socket! */

/* signal handler - reaps children as they terminate */
void reapchildren(int sig) {

pid_t pid;

int stat;

while ((pid = waitpid(-1, &stat, WNOHANG)) > 0) {

}
oo )
return;

}

® Alternatively, set handler to SIG_IGN (recent OS's)
6




The University of Queensland CSSE2310 / CSSE7231
School of ITEE Semester One, 2012

Process-based Concurrent Implementation Issues With
Server Example 7 Process-Based Designs
¢ Tuesday’s server example to be * anster of control to the S1GCHLD handier Y
extended in class ® Not necessary for systems with POSIX signal handling

and restart flag is specified

m Required for portability on some older Unix systems.
® Server must reap zombie children

® to avoid running out of processes
® Server must close its copy of connfd

m Kernel keeps reference count for each socket

m After fork, refcnt (connfd) = 2

= Connection will not be closed until refcnt (connfd) =0

7 8
Thread-Based Thread-based Concurrent
Concurrent Server 7 Server Example
" /% main server loop */ ® Tuesday’s server example to be
Whilzongll)fd(= accept (listenfd, (struct sockaddr *) &clientaddr, eXtended In Class
&clientlen)) ;

pthread_create (sthreadID, NULL, client thread, (void*)Ed);
pthread_detach (threadID) ;
}

void* client_thread(void* arg)
{
int £d;
fd = (int)arg; /* Retrieve file descriptor from argument */

. /* Read data, process, write data etc. */
close (£d) ;

pthread_exit (NULL) ;
return NULL;

Pros and Cons of
Process Based Designs

+ Handles multiple connections concurrently 3. I/0 multiplexing with select ()

) ) - ) . ’
+ Simple and straightforward User manually interleaves multiple logical flows
® Each flow shares the same address space

Third option...

- Additional overhead for process control ® Popular for high-performance server designs
- Nontrivial to share data between processes
H Requires interprocess communication (IPC) mechanisms ® Event-based design
® FIFO’s (named pipes), shared memory and semaphores ® More on this next week (Friday)

Thread based designs

+ Easier to share data between threads
(though may need mutexes/semaphores)
- Do have thread overhead




The University of Queensland CSSE2310 / CSSE7231
School of ITEE Semester One, 2012

Resources

® Beej's Guide to Network Programming
® http://beej.us/guide/bgnet/
® Manual pages
B On MOsS: man <name> OF man -s 2 <name>

® where <name> is socket, bind, connect, listen, accept,
recv, send, ...

® Glass & Ables, "UNIX for Programmers and Users”
® Rochkind, “Advanced UNIX Programming”

® Bryant and O’Halloran, “"Computer Systems: A
Programmer’s Perspective”

® Other UNIX Programming books...
m See Reference text list in course profile




