
The University of Queensland
School of ITEE

1

CSSE2310 / CSSE7231
Semester One, 2012

School of Information Technology and Electrical Engineering
The University of Queensland

Week 10 - Friday

Network Programming
(cont.)

Outline

l C Network Programming
n Concurrent servers – multi process
n Concurrent servers – multi thread

l Credits:
n Glass and Ables, “UNIX for Programmers and

Users”
n Bryant and O’Halloran, “Computer Systems: A

Programmer’s Perspective”
n Rochkind, “Advanced UNIX Programming”
n Tanenbaum, “Computer Networks”

2

3

Iterative Servers

l  Iterative servers process one request at a
time

client 1" server" client 2"

call connect call accept!
ret connect

ret accept!

call connect

call read
write

ret read
close

close
call accept!

ret connect

call read

ret read

close

write

ret accept!

close

Client 2 has to
wait until server

deals with client 1

4

3 Basic Mechanisms for
Creating Concurrent Flows

1.  Processes
n  Kernel automatically interleaves multiple logical flows
n  Each flow has its own private address space

2.  Threads
n  Kernel automatically interleaves multiple logical flows
n  Each flow shares the same address space

3.  I/O multiplexing with select()
n  User manually interleaves multiple logical flows
n  Each flow shares the same address space
n  Popular for high-performance server designs

5

Process-Based
Concurrent Server

...
 /* main server loop */
 while (1) {
 connfd = accept(listenfd, (struct sockaddr *) &clientaddr,
 &clientlen));
 if (fork() == 0) {
 close(listenfd); /* child closes its listening socket */
 ... /* Read data from connfd, process, write data etc. */
 close(connfd); /* child is done with this client */
 exit(0); /* child exits */
 }
 close(connfd); /* parent must close connected socket! */
 }
...

6

Process-Based
Concurrent Server (cont.)
... /* parent must reap children! – set up handler */
struct sigaction sa;
sa.sa_handler = reapchildren;
sa.sa_flags = SA_RESTART | SA_NOCLDSTOP;
sigaction(SIGCHLD, &sa, NULL);...

/* signal handler - reaps children as they terminate */
void reapchildren(int sig) {
 pid_t pid;
 int stat;

 while ((pid = waitpid(-1, &stat, WNOHANG)) > 0) {
 ;
 }
 return;
}

l  Alternatively, set handler to SIG_IGN (recent OS’s)

The University of Queensland
School of ITEE

2

CSSE2310 / CSSE7231
Semester One, 2012

Process-based Concurrent
Server Example

l Tuesday’s server example to be
extended in class

7 8

Implementation Issues With
Process-Based Designs

l  Server should restart accept call if it is interrupted by a
transfer of control to the SIGCHLD handler
n  Not necessary for systems with POSIX signal handling

and restart flag is specified
n  Required for portability on some older Unix systems.

l  Server must reap zombie children
n  to avoid running out of processes

l  Server must close its copy of connfd
n  Kernel keeps reference count for each socket
n  After fork, refcnt(connfd) = 2
n  Connection will not be closed until refcnt(connfd)=0

10

Thread-Based
Concurrent Server

...
 /* main server loop */
 while (1) {
 connfd = accept(listenfd, (struct sockaddr *) &clientaddr,
 &clientlen));
 pthread_create(&threadID, NULL, client_thread, (void*)fd);
 pthread_detach(threadID);
 }
...
void* client_thread(void* arg)
{
 int fd;
 fd = (int)arg; /* Retrieve file descriptor from argument */

 ... /* Read data, process, write data etc. */

 close(fd);
 pthread_exit(NULL);
 return NULL;
}

Thread-based Concurrent
Server Example

l Tuesday’s server example to be
extended in class

11

12

Pros and Cons of
Process Based Designs

+ Handles multiple connections concurrently
+ Simple and straightforward
– Additional overhead for process control
– Nontrivial to share data between processes

n Requires interprocess communication (IPC) mechanisms
l FIFO’s (named pipes), shared memory and semaphores

Thread based designs
+ Easier to share data between threads
 (though may need mutexes/semaphores)
– Do have thread overhead

13

Third option…

3.  I/O multiplexing with select()
n  User manually interleaves multiple logical flows
n  Each flow shares the same address space
n  Popular for high-performance server designs

l  Event-based design
l  More on this next week (Friday)

The University of Queensland
School of ITEE

3

CSSE2310 / CSSE7231
Semester One, 2012

14

Resources

l  Beej's Guide to Network Programming
n  http://beej.us/guide/bgnet/

l  Manual pages
n  On moss: man <name> or man –s 2 <name>
n where <name> is socket, bind, connect, listen, accept,

recv, send, …
l  Glass & Ables, “UNIX for Programmers and Users”
l  Rochkind, “Advanced UNIX Programming”
l  Bryant and O’Halloran, “Computer Systems: A

Programmer’s Perspective”
l  Other UNIX Programming books…

n  See Reference text list in course profile

