
The University of Queensland
School of ITEE

1

CSSE2310 / CSSE7231
Semester One, 2012

School of Information Technology and Electrical Engineering
The University of Queensland

Week 10

Network Programming

2

Outline

l  TCP/IP
l  Sockets
l  Typical TCP client
l  Typical TCP server

l  Credits:

n Glass and Ables, “UNIX for Programmers and Users”
n Bryant and O’Halloran, “Computer Systems: A

Programmer’s Perspective”
n Rochkind, “Advanced UNIX Programming”
n  Tanenbaum, “Computer Networks”

3

Client-Server Model

l Most network applications are based on the
client-server model:
n A server process and one or more client processes
n Server manages some resource
n Server provides service by manipulating resource for

clients

Client!
process!

Server!
process!

1. Client sends request!

2. Server !
handles!
request!

3. Server sends response!4. Client !
handles!

response!

Resource!

Note: clients and servers are processes running on hosts !
(can be the same or different hosts).!

TCP/IP

l Protocol = Rules for communication
l TCP = Transmission Control Protocol

n Provides communication between ports on two
computers (hosts)
l Bidirectional
l Point-to-point
l Reliable
l Byte stream

n Uses IP (Internet Protocol) to transmit small
packets of data between two IP addresses

l  Joel will return to these protocols next week
l Today – how to write programs using TCP/IP

4

5

TCP Connections

l Identified by
n Source IP address
n Source port number
n Destination IP address
n Destination port number

6

IP Addresses (v4)

l 32-bit numbers
l Often written in dotted-decimal

notation for human consumption
n each of the 4 bytes written in decimal

l e.g. 130.102.2.15

l Some addresses have special meanings

The University of Queensland
School of ITEE

2

CSSE2310 / CSSE7231
Semester One, 2012

7

Port Numbers

l 16 bits: 0 – 65535
l Below 1024

n Well known ports
n Reserved for standard services, e.g.

l 23 - Telnet
l 21 – FTP
l 80 – HTTP

n Look in /etc/services on a UNIX box

8

Sockets

l  Introduced in Berkeley UNIX
l  Sometimes called UNIX sockets
l  Originally C based

n Many other languages now
l  A socket is a communication endpoint

n Associated with a file descriptor in UNIX – can do
file I/O on socket

n Main distinction between regular file I/O and socket
I/O is how the application “opens” the socket
descriptors

l  Many types of sockets
n We’ll look at stream sockets (TCP)

9

Hardware and Software Organisation
of a TCP/IP Application

TCP/IP!

Client!

Network!
adapter!

Global IP Internet!

TCP/IP!

Server!

Network!
adapter!

Client host! Server host!

Sockets interface!
(system calls)!

Hardware interface!
(interrupts)!

User code!

Kernel code!

Hardware!
and firmware!

10

Socket System Calls

l socket(…)
n Create new communication end-point

l bind(…)
n Attach a local address to a socket

l listen(…)
n Willing to accept connections, give queue size

l accept(…)
n Wait for a connection attempt to arrive

l connect(…)
n Attempt to establish a connection

11

Socket System Calls (cont.)

l  send(…) or write(…)
n  Send data over the connection

l  recv(…) or read(…)
n  Receive data over the connection

l  sendto(…)
n  Send datagram

l  recvfrom(…)
n  Receive datagram

l  close(…)
n  Release the connection

l  shutdown(…)
n  Close down one side of connection (or both sides)

l  Not all are applicable in all circumstances!
12

Typical TCP Server

l  Create socket socket(…)
l  Bind to address/port bind(…)
l  Specify willingness to

accept connections listen(…)
l  Block waiting for

connection accept(…)
n  accept(…) returns a

new socket
n Original socket continues

to listen
l  Deal with request

n  e.g. spawn process send(…)or write(…)
or thread recv(…)or read(…)

l  Continue

The University of Queensland
School of ITEE

3

CSSE2310 / CSSE7231
Semester One, 2012

13

Typical TCP Client

l  Create socket socket(…)
l  Connect to server

(at a particular address) connect(…)
l  Send/receive data as send(…) or write(…)

necessary recv(…) or read(…)
l  Close connection close(…)

l  Clients don’t normally use bind(…)
n  don’t care what the outgoing port is

14

Other Programming
Languages

l Sockets interface is available in many
programming languages
n Interface is similar (but not identical)

across all of them

l We’ll be concentrating on the C sockets
interface

16

IP Addresses in C

l  32-bit IP addresses are stored in an IP address struct
n  IP addresses are always stored in memory in network byte

order (big-endian byte order)
n  True in general for any integer transferred in a packet header

from one machine to another
l  E.g., the port number used to identify an Internet connection

l  Handy network byte-order conversion functions:
n  htonl(): convert uint32_t from host to network byte order.
n  htons(): convert uint16_t from host to network byte order.
n  ntohl(): convert uint32_t from network to host byte order.
n  ntohs(): convert uint16_t from network to host byte order.

typedef uint32_t in_addr_t;
/* Internet address structure */
struct in_addr {
 in_addr_t s_addr; /* network byte order (big-endian) */
};

17

IP Addresses in C (cont.)

l  Users (applications) often write IP addresses using
dotted decimal notation

l e.g. IP address 0x8002C2F2 = 128.2.194.242
l  Functions for converting between binary IP addresses

and dotted decimal strings:
n  inet_aton(…): converts a dotted decimal string to an

IP address in network byte order
n  inet_ntoa(…): converts an IP address in network byte

order to its corresponding dotted decimal string
n  “n” denotes network representation. “a” denotes

application representation

18

Address Handling
Code Examples

l To be discussed/commented in class

19

Creating a Socket

l socket(…) creates a socket descriptor
n AF_INET: indicates that the socket is

associated with Internet protocols
n SOCK_STREAM: selects a reliable byte

stream connection (TCP)

int fd; /* socket descriptor */

/* Create a TCP socket descriptor */
fd = socket(AF_INET, SOCK_STREAM, 0)
if (fd < 0) {
 perror("Socket creation failed");
 exit(1);
}

The University of Queensland
School of ITEE

4

CSSE2310 / CSSE7231
Semester One, 2012

20

Socket Address Structures

l  Generic socket address:
n  For address arguments to connect, bind, and accept.
n  Necessary only because C did not have generic (void *)

pointers when the sockets interface was designed

l  Internet-specific socket address:
n  Must cast (struct sockaddr_in *) to (struct sockaddr *)

for connect, bind, and accept

struct sockaddr {
 sa_family_t sa_family; /* protocol family */
 char sa_data[14]; /* address data. */
};

struct sockaddr_in {
 sa_family_t sin_family; /* address family (always AF_INET) */
 in_port_t sin_port; /* port num in network byte order */
 struct in_addr sin_addr; /* IP addr in network byte order */
 unsigned char sin_zero[8]; /* pad to sizeof(struct sockaddr) */
}; 21

Socket Address Structures

struct sockaddr {
 sa_family_t sa_family; /* protocol family */
 char sa_data[14]; /* address data. */
};

struct sockaddr_in {
 sa_family_t sin_family; /* address family (always AF_INET) */
 in_port_t sin_port; /* port num in network byte order */
 struct in_addr sin_addr; /* IP addr in network byte order */
 unsigned char sin_zero[8]; /* pad to sizeof(struct sockaddr) */
};

23

Typical Client
(Stream based)

l  Create socket socket(…)
l  Connect to server

(at a particular address) connect(…)
l  Send/receive data as send(…) or write(…)

necessary recv(…) or read(…)
l  Close connection close(…)

24

Sample Client Code

l To be discussed/commented in class

25

Typical Server
(Stream based)

l  Create socket socket(…)
l  Bind to address/port bind(…)
l  Specify willingness to

accept connections listen(…)
l  Block waiting for

connection accept(…)
n  accept(…) returns a

new socket
n Original socket continues

to listen
l  Deal with request

n  e.g. spawn process/thread send(…)or write(…)
& communicate recv(…)or read(…)

l  Continue
26

accept()

l  accept(…) blocks waiting for a connection request

l  accept(…) returns a connected descriptor (connfd) with
the same properties as the listening descriptor
(listenfd)
n  Returns when the connection between client and server

is created and ready for I/O transfers
n  All I/O with the client will be done via the connected

socket
l  accept(…) also fills in client’s IP address.

 int listenfd; /* listening descriptor */
 int connfd; /* connected descriptor */
 struct sockaddr_in clientaddr;
 int clientlen;

 clientlen = sizeof(clientaddr);
 connfd = accept(listenfd, (struct sockaddr*)&clientaddr, &clientlen);

The University of Queensland
School of ITEE

5

CSSE2310 / CSSE7231
Semester One, 2012

27

accept() Illustrated

listenfd(3)

Client!

1. Server blocks in accept,
waiting for connection
request on listening
descriptor listenfd.!

Server!

listenfd(3)

Client! Server!
2. Client makes connection
request by calling and blocking in
connect.

Connection!
request!

listenfd(3)

Client!

clientfd

Server!

3. Server returns connfd from
accept. Client returns from
connect. Connection is now
established between clientfd
and connfd.!connfd(4) 28

Connected vs. Listening
Descriptors

l  Listening descriptor
n  End point for client connection requests
n  Created once and exists for lifetime of the server

l  Connected descriptor
n  End point of the connection between client and server
n  A new descriptor is created each time the server accepts

a connection request from a client
n  Exists only as long as it takes to service client

l  Why the distinction?
n  Allows for concurrent servers that can communicate

over many client connections simultaneously
l e.g., each time we receive a new request, we fork a child

process to handle the request

29

Socket Options: setsockopt

l  The socket can be given some attributes
n Many are integers

l  Handy trick that allows us to rerun a server immediately
after we kill it
n  Otherwise we may have to wait about 30 secs+
n  Eliminates “Address already in use” error from bind()
n  Useful when debugging

int optval = 1;
…
/* Eliminates "Address already in use" error from bind(). */
if (setsockopt(fd, SOL_SOCKET, SO_REUSEADDR,
 (const void *)&optval , sizeof(int)) < 0)
{
 perror("Unable to set socket option");
 exit(1);
}

30

Identifying the Client

l The server can determine the domain
name and IP address of the client

 int error;
 char hostname[128]; /* Space to hold hostname */

 /* After accept() has populated clientaddr, clientlen */

 error = getnameinfo((struct sockaddr*)&clientaddr, clientlen,
 hostname, 128, NULL, 0, 0);
 if(!error) {
 printf("Connection from %s (%s)\n", hostname,
 inet_ntoa(clientaddr.sin_addr));
 }

32

Testing Servers Using
netcat

l  The netcat (nc) program is invaluable for
testing servers that transmit over Internet
connections
n Our simple server
n Web servers
n Mail servers

l  Usage:
n  unix> nc <host> <portnumber>
n Creates a connection with a server running on <host>

and listening on port <portnumber>

l  netcat can also pretend to be a server
l  unix> nc –l –p <portnumber>

33

Sample Server Code

l To be discussed/commented in class

The University of Queensland
School of ITEE

6

CSSE2310 / CSSE7231
Semester One, 2012

34

Iterative Servers

l  Iterative servers process one request at a
time

client 1" server" client 2"

call connect call accept!
ret connect

ret accept!

call connect

call read
write

ret read
close

close
call accept!

ret connect

call read

ret read

close

write

ret accept!

close

Client 2 has to
wait until server

deals with client 1

35

3 Basic Mechanisms for
Creating Concurrent Flows

1.  Processes
n  Kernel automatically interleaves multiple logical flows
n  Each flow has its own private address space

2.  Threads
n  Kernel automatically interleaves multiple logical flows
n  Each flow shares the same address space

3.  I/O multiplexing with select()
n  User manually interleaves multiple logical flows
n  Each flow shares the same address space
n  Popular for high-performance server designs

36

Resources

l  Beej's Guide to Network Programming
n  http://beej.us/guide/bgnet/

l  Manual pages
n  On moss: man <name> or man –s 2 <name>
n where <name> is socket, bind, connect, listen, accept,

recv, send, …
l  Glass & Ables, “UNIX for Programmers and Users”
l  Rochkind, “Advanced UNIX Programming”
l  Bryant and O’Halloran, “Computer Systems: A

Programmer’s Perspective”
l  Other UNIX Programming books…

n  See Reference text list in course profile

