The University of Queensland
School of ITEE

232

£
i Week 10

\

Naaro
s

2.

210/C

i ——

Network Programming

e e

School of Information Technology and Electrical Engineering
The University of Queensland

Outline

® TCP/IP

® Sockets

® Typical TCP client
® Typical TCP server

® Credits:
B Glass and Ables, "UNIX for Programmers and Users”

®m Bryant and O’Halloran, "Computer Systems: A
Programmer’s Perspective”

B Rochkind, “"Advanced UNIX Programming”
B Tanenbaum, “"Computer Networks”

CSSE2310 / CSSE7231
Semester One, 2012

The University of Queensland CSSE2310 / CSSE7231
School of ITEE Semester One, 2012

Client-Server Model

® Most network applications are based on the
client-server model:
m A server process and one or more client processes
® Server manages some resource

m Server provides service by manipulating resource for
clients

1. Client sends request
Client \ T Server e

4. Client 3. Server sends response 2. Server

handles handles
response request

Note: clients and servers are processes running on hosts
(can be the same or different hosts).

TCP/IP

® Protocol = Rules for communication

® TCP = Transmission Control Protocol
® Provides communication between ports on two
computers (hosts)
@ Bidirectional
® Point-to-point
® Reliable
® Byte stream
m Uses IP (Internet Protocol) to transmit small
packets of data between two IP addresses
® Joel will return to these protocols next week

® Today - how to write programs using TCP/IP

The University of Queensland CSSE2310 / CSSE7231
School of ITEE Semester One, 2012

TCP Connections

® Identified by
m Source IP address
W Source port number
m Destination IP address
m Destination port number

IP Addresses (v4)

® 32-bit numbers

® Often written in dotted-decimal
notation for human consumption

meach of the 4 bytes written in decimal
®e.g. 130.102.2.15

® Some addresses have special meanings

The University of Queensland CSSE2310 / CSSE7231
School of ITEE Semester One, 2012

Port Numbers

® 16 bits: 0 - 65535
® Below 1024
mWell known ports
mReserved for standard services, e.g.

023 - Telnet
21 - FTP
80 - HTTP

mLook in /etc/services on a UNIX box

Sockets

S ——
Introduced in Berkeley UNIX
Sometimes called UNIX sockets
Originally C based
® Many other languages now
A socket is a communication endpoint

m Associated with a file descriptor in UNIX - can do
file I/O on socket

B Main distinction between regular file I/O and socket
I/0 is how the application “opens” the socket
descriptors

Many types of sockets
m We'll look at stream sockets (TCP)

The University
School of ITEE

of Queensland CSSE2310 / CSSE7231
Semester One, 2012

Hardware and Software Organisation
of a TCP/IP Application

EEEE EEEEE——,

Client host Server host
Client User code Server
Sockets tetace £ T
(system calls) '
TCP/IP iKerneI code TCP/IP
Hardvare intertace .\ .. —
(interrupts) ! .
i| Network | Hardware i| Network
| adapter | and firmware | adapter |!
[Global IP Internet]

Socket System Calls

® socket(..)
® Create new communication end-point
® bind(...)
m Attach a local address to a socket
® listen(..)
m Willing to accept connections, give queue size
® accept(...)
®m Wait for a connection attempt to arrive

® connect(..)
m Attempt to establish a connection

10

The University of Queensland CSSE2310 / CSSE7231
School of ITEE Semester One, 2012

Socket System Calls (cont.)
e
® send(..) Or write(..)
B Send data over the connection
® recv(..) Or read(..)
B Receive data over the connection
® sendto(..)
B Send datagram
® recvfrom(..)
B Receive datagram
® close(..)
m Release the connection
® shutdown(...)
m Close down one side of connection (or both sides)
® Not all are applicable in all circumstances! o
Typical TCP Server
S ——
® Create socket socket (...)
® Bind to address/port bind(..)
® Specify willingness to
accept connections listen(..)
©® Block waiting for
connection accept (..)
B accept (..) returns a
new socket
m Original socket continues
to listen
® Deal with request
M e.g. spawn process send (..)Or write (..)
or thread recv (..)Or read (..)
|_® Continue
12

The University of Queensland CSSE2310 / CSSE7231
School of ITEE Semester One, 2012

Typical TCP Client

® Create socket socket (...)
@ Connect to server
(at a particular address) connect (...)
® Send/receive data as send(..) Or write (..)
necessary recv (...) Or read(...)
® Close connection close (..)

® Clients don't normally use bind(...)
B don't care what the outgoing port is

13

Other Programming
Languages

® Sockets interface is available in many
programming languages
mInterface is similar (but not identical)
across all of them

® We’ll be concentrating on the C sockets
interface

14

The University of Queensland CSSE2310 / CSSE7231
School of ITEE Semester One, 2012

IP Addresses in C

® 32-bit IP addresses are stored in an IP address struct
m IP addresses are always stored in memory in network byte
order (big-endian byte order)
B True in general for any integer transferred in a packet header
from one machine to another
® E.g., the port number used to identify an Internet connection

typedef uint32_t in_addr_t;
/* Internet address structure */
struct in_addr {
in_addr_t s_addr; /* network byte order (big-endian) */

}i

® Handy network byte-order conversion functions:
B htonl (): convert uint32_t from host to network byte order.
B htons (): convert uintl6_t from host to network byte order.
B ntohl (): convert uint32_t from network to host byte order.

B ntohs (): convert uintl6_t from network to host byte order. 16

IP Addresses in C (cont.)

® Users (applications) often write IP addresses using
dotted decimal notation
® e.g. IP address 0x8002C2F2 = 128.2.194.242
® Functions for converting between binary IP addresses
and dotted decimal strings:

B inet aton(..): converts a dotted decimal string to an
IP address in network byte order
B inet ntoa(..): converts an IP address in network byte

order to its corresponding dotted decimal string

B “n” denotes network representation. “a” denotes
application representation

17

The University of Queensland CSSE2310 / CSSE7231
School of ITEE Semester One, 2012

Address Handling
Code Examples

® To be discussed/commented in class

18

Creating a Socket

® socket (..) creates a socket descriptor

BAF INET: indicates that the socket is
associated with Internet protocols

B SOCK STREAM: selects a reliable byte
stream connection (TCP)

int fd; /* socket descriptor */

/* Create a TCP socket descriptor */
fd = socket (AF_INET, SOCK_STREAM, 0)
if (£d < 0) {
perror ("Socket creation failed");
exit(1);

}

19

The University
School of ITEE

of Queensland

CSSE2310 / CSSE7231
Semester One, 2012

Socket Address Structures

® Generic socket address:

B For address arguments to connect, bind, and accept.
m Necessary only because C did not have generic (void *)

pointers when the sockets interface was designed

struct sockaddr {
sa_family t
char

}i

sa_family;

sa_data[l4]; /* address data

/* protocol family */
. */

® Internet-specific socket address:

B Must cast (struct sockaddr in *) to (struct sockaddr *)

for connect, bind, and accept

struct sockaddr_in {

unsigned char

sa_family t sin_family; /* address family (always AF_INET) */
in port t sin_port; /* port num in network byte order */
struct in_addr sin_addr; /* IP addr in network byte order */

sin zero[8]; /*

pad to sizeof (struct sockaddr) */

Socket Address Structures

struct sockaddr {
sa_family t
char

};

sa_family;
sa_data[14];

/* protocol family */
/* address data.

*/

sa_family t

in port t
struct in_addr
unsigned char

struct sockaddr_in {

sin_family;
sin_port;
sin addr;

sin:zero[B];

/*
/*
/*
/*

address family (always AF_INET) */
port num in network byte order */
IP addr in network byte order */

pad to sizeof (struct sockaddr) */

10

The University of Queensland CSSE2310 / CSSE7231
School of ITEE Semester One, 2012

Typical Client
(Stream based)

e

® Create socket socket (...)
® Connect to server
(at a particular address) connect (...)
® Send/receive data as send(..) Or write (..)
necessary recv (...) Or read(...)
® Close connection close (..)

23

Sample Client Code

® To be discussed/commented in class

24

11

The University of Queensland CSSE2310 / CSSE7231
School of ITEE Semester One, 2012

Typical Server
(Stream based)

e ——
® Create socket socket (...)
® Bind to address/port bind (..)
® Specify willingness to
accept connections listen(..)

©® Block waiting for
connection accept (..)

B accept (..) returns a
new socket

m Original socket continues
to listen

® Deal with request
B e.g. spawn process/thread send(..)Or write (..)
& communicate recv (..) Or read (..)
|_® Continue

25

accept ()

R —
® accept (...) blocks waiting for a connection request

int listenfd; /* listening descriptor */
int connfd; /* connected descriptor */
struct sockaddr_in clientaddr;

int clientlen;

clientlen = sizeof (clientaddr) ;
connfd = accept(listenfd, (struct sockaddr*)&clientaddr, &clientlen);

® accept (..) returns a connected descriptor (connfd) with
the same properties as the /istening descriptor
(1istenfd)
B Returns when the connection between client and server
is created and ready for I/O transfers
m All I/O with the client will be done via the connected
socket

® accept (...) also fills in client’s IP address. 26

12

The University of Queensland CSSE2310 / CSSE7231
School of ITEE Semester One, 2012

accept () Illustrated

listenfd(3) 1. Server blocks in accept,
. @ waiting for connection
Client SR request on listening
descriptor 1istenfd.
c°""e°t't°" listenfd(3)
request . +0l 2. Client makes connection
Client Server request by calling and blocking in
connect.
listenfd(3) 3. Server returns connfd from

o accept. Client returns from
Client Server connect. Connection is now
clientfd conn£d(4) established between clien t:fd2
and connfd. 7

Connected vs. Listening
Descriptors

® Listening descriptor
B End point for client connection requests
B Created once and exists for lifetime of the server
® Connected descriptor
B End point of the connection between client and server

B A new descriptor is created each time the server accepts
a connection request from a client

B Exists only as long as it takes to service client
® Why the distinction?
m Allows for concurrent servers that can communicate
over many client connections simultaneously

® e.g., each time we receive a new request, we fork a child
process to handle the request

28

13

The University of Queensland

School of ITEE

CSSE2310 / CSSE7231

Semester One, 2012

Socket Options: setsockopt

® The socket can be given some attributes
B Many are integers

int optval = 1;

/* Eliminates "Address already in use" error from bind(). */
if (setsockopt(fd, SOL_SOCKET, SO_REUSEADDR,
(const void *) &optval , sizeof (int)) < 0)
{
perror ("Unable to set socket option");
exit(1l);
}

® Handy trick that allows us to rerun a server immediately

after we kill it

B Otherwise we may have to wait about 30 secs+

B Eliminates “Address already in use” error from bind ()
m Useful when debugging

29

Identifying the Client

S ——

® The server can determine the domain
name and IP address of the client

int error;
char hostname[128]; /* Space to hold hostname */

/* After accept() has populated clientaddr, clientlen */

error = getnameinfo ((struct sockaddr*)&clientaddr, clientlen,
hostname, 128, NULL, 0, O0);
if ('error) {
printf ("Connection from %s (%s)\n", hostname,
inet_ntoa(clientaddr.sin_addr));

30

14

The University of Queensland CSSE2310 / CSSE7231
School of ITEE Semester One, 2012

Testing Servers Using
netcat

® The netcat (nc) program is invaluable for
testing servers that transmit over Internet
connections

B Our simple server
B Web servers
®m Mail servers
® Usage:
B unix> nc <host> <portnumber>

B Creates a connection with a server running on <host>
and listening on port <portnumber>

® netcat can also pretend to be a server
® unix> nc -1 —-p <portnumber>

32

Sample Server Code

® To be discussed/commented in class

33

15

The University of Queensland CSSE2310 / CSSE7231
School of ITEE

Semester One, 2012

Iterative Servers

® Iterative servers process one request at a
time
client 1 server client 2

call connect call accept, ..o call connect

ret connect
call read

ret accept

write

close
close

ret read
call accept

Client 2 has to
wait until server
deals with client 1

» | ret connect

ret accept [*

call read
write

ret read
close

close

34

3 Basic Mechanisms for
Creating Concurrent Flows

1. Processes

m Kernel automatically interleaves multiple logical flows

B Each flow has its own private address space
2. Threads

B Kernel automatically interleaves multiple logical flows
B Each flow shares the same address space
3. I/O multiplexing with select ()
B User manually interleaves multiple logical flows
B Each flow shares the same address space
B Popular for high-performance server designs

35

16

The University of Queensland

School of ITEE

CSSE2310 / CSSE7231

Semester One, 2012

Resources

Beej's Guide to Network Programming

B http://beej.us/guide/bgnet/

Manual pages

B On MOSS: man <name> OF man -s 2 <name>

B where <name> is socket, bind, connect, listen, accept,
recv, send, ...

Glass & Ables, "UNIX for Programmers and Users”
Rochkind, “Advanced UNIX Programming”

Bryant and O’Halloran, "Computer Systems: A
Programmer’s Perspective”

Other UNIX Programming books...
B See Reference text list in course profile

36

17

