
School of Information Technology and Electrical Engineering
The University of Queensland

C
S

S
E

2
3
1
0

7
2
3
1

C
om

pu
te

r
S

ys
te

m
s

P
rin

ci
pl

es
 +

P

ro
gr

am
m

in
g

Week 8

Threads and concurrency

2
C

S
S

E
2
3
1
0

7
2
3
1

Outline

Threads
– Programming with pthreads

Synchronization

3

C
S

S
E

2
3
1
0

7
2
3
1

References

Bryant & O’Halloran 13.3

“Programming with POSIX Threads”, D.
Butenhof, 1997

(Glass & Ables don’t talk about threads at
all)

https://computing.llnl.gov/tutorials/pthrea
ds

4

C
S

S
E

2
3
1
0

7
2
3
1

Threads

A process may have multiple threads of
control

– Threads share code, data, open files etc but
have separate control flows
• Have to be careful about accessing shared resources!

– Threads have id’s, need context switching etc

5

C
S

S
E

2
3
1
0

7
2
3
1

Threads

(a) Three processes each with one thread
(b) One process with three threads

6

C
S

S
E

2
3
1
0

7
2
3
1

Logical View of Threads

Threads associated with a process form a pool of peers
– Unlike processes which form a tree hierarchy

P0

P1

sh sh sh

foo

bar

T1

Process hierarchyThreads associated with process foo

T2
T4

T5 T3

shared code, data
and kernel context

7

C
S

S
E

2
3
1
0

7
2
3
1

Concurrent Thread Execution

Two threads run concurrently (are concurrent) if
their logical flows overlap in time

Otherwise, they
are sequential.

Examples:
– Concurrent

• A & B, A&C

– Sequential
• B & C

Time

Thread A Thread B Thread C

8
C

S
S

E
2
3
1
0

7
2
3
1

Threads vs. Processes

How threads and processes are similar
– Each has its own logical control flow
– Each can run concurrently
– Each is context switched

How threads and processes are different
– Threads share code and data, processes (typically) do

not
– Threads are somewhat less expensive than processes

• Process control (creating and reaping) is twice as
expensive as thread control

• Linux/Pentium III numbers:
– ~20K cycles to create and reap a process
– ~10K cycles to create and reap a thread

9

C
S

S
E

2
3
1
0

7
2
3
1

Single and Multithreaded
Processes

10

C
S

S
E

2
3
1
0

7
2
3
1

Benefits of Threads

Responsiveness
– e.g. one thread for UI, another for computation

Resource Sharing
– Easier to share memory between threads than

processes

Economy
– Cheaper to start/switch threads than processes

Utilization of multi-processor (MP) architectures

What about google chrome?

11

C
S

S
E

2
3
1
0

7
2
3
1

Multithreading Models

Many-to-One (User Threads)
– Threads implemented in user space

• Packages are available to help with this

– OS knows nothing about them

One-to-One
– Threads implemented in kernel space, one

kernel thread per user thread

Many-to-Many
– Hybrid model

12

C
S

S
E

2
3
1
0

7
2
3
1

Posix Threads (Pthreads)
Interface

POSIX standard (IEEE 1003.1c) API for
thread creation and synchronization

API specifies behavior of the thread
library, implementation is up to
development of the library

Common in UNIX operating systems

13

C
S

S
E

2
3
1
0

7
2
3
1

Programming with Pthreads

Thread types
– pthread_t – similar to pid
– opaque type

Thread operations
– pthread_create
– pthread_join – similar to waitpid (there is no

equivalent to wait)

14
C

S
S

E
2
3
1
0

7
2
3
1

threads1

pthread_create takes a function pointer to
start the thread

pthread_join waits for a specific thread
int main() {
 pthread_t tid;
 pthread_create(&tid, NULL, thread1, NULL);
 pthread_join(tid, NULL);
 printf(“Hello from first\n”);
 exit(0);
}

void *thread1(void *vargp) {
 printf(“Hello from second\n”);
 return NULL;
}

15

C
S

S
E

2
3
1
0

7
2
3
1

threads2

pthread_self

pthread_exit
int main() {
 pthread_t tid;
 pthread_create(&tid, NULL, thread2, NULL);
 printf("Thread %d exiting\n", pthread_self());
 pthread_exit(NULL);
 return 0;
}

void *thread2(void *vargp) {
 printf("Thread %d exiting\n", pthread_self());
 return NULL;
}

16

C
S

S
E

2
3
1
0

7
2
3
1

threads3

pthread_cancel

int main() {
 pthread_t tid;
 pthread_create(&tid, NULL, thread3, NULL);
 printf("Killing %d\n", tid);
 pthread_cancel(tid);
 return 0;
}

void *thread3(void *vargp) {
 printf("Thread %d exiting\n",pthread_self());
 return NULL;
}

17

C
S

S
E

2
3
1
0

7
2
3
1

threads4

pthread_detach
int main() {
 pthread_t tid; int status;
 pthread_create(&tid, NULL, thread4, NULL);
 pthread_detach(tid);
 printf("Trying to join %d\n", tid);
 status = pthread_join(tid, NULL);
 if(status)printf("Failed to join thread %d\n",tid);
 pthread_exit(NULL);
 return 0;
}
void *thread4(void *vargp) {
 printf("Thread %d exiting\n",pthread_self());
 return NULL;
}

18

C
S

S
E

2
3
1
0

7
2
3
1

Thread lifecycle

Possible states:
– Ready
– Running
– Blocked
– Terminated

• Recycling

Compare with process states

19

C
S

S
E

2
3
1
0

7
2
3
1

Sharing data

What data is shared?
– Global variables – one copy per process
– Local variables – one copy per thread
– Static variables – one copy per process

• declared multiple times, only one copy exists though!

20
C

S
S

E
2
3
1
0

7
2
3
1

Sharing data

What is output by the following?

20

char **ptr;
int main() {
 int i;
 pthread_t tid;
 char *msgs[N] = {"Hello from foo“,"Hello from bar”};
 ptr = msgs;
 for (i = 0; i < N; i++)
 pthread_create(&tid, NULL, thread5, (void *)i);
 pthread_exit(NULL);
}
void *thread5(void *vargp)
{
 int myid = (int)vargp;
 static int cnt = 0;
 printf("[%d]: %s (cnt=%d)\n", myid, ptr[myid], ++cnt);
}

21

C
S

S
E

2
3
1
0

7
2
3
1

Sharing data

What does the following output?
int count;
int main() {
...
 count = 0;
 /* Create two thread6’s, wait for them to finish */
...
 if (count != ITERATIONS * 2)
 printf("Error: %d\n",count);
...}

void *thread6(void *vargp){
 int i;
 for(i = 0; i < ITERATIONS; i++) count++;
 return NULL;
}

22

C
S

S
E

2
3
1
0

7
2
3
1

Sharing data

Race condition
– Global variable count accessed by multiple

threads
– The two threads read, then increment, then

write back
– Not a single operation

How do we stop this?

Atomic operations
– Must be run without interruption

23

C
S

S
E

2
3
1
0

7
2
3
1

Sharing data

Race condition
– Global variable count accessed by multiple

threads
– The two threads read, then increment, then

write back
– Not a single operation

How do we stop this?

Atomic operations
– Must be run without interruption

24

C
S

S
E

2
3
1
0

7
2
3
1

Critical Section

A critical section of a thread is a segment
of code that shouldn’t be interleaved with
another thread’s critical section.

Note that these threads could be in
different processes.

25

C
S

S
E

2
3
1
0

7
2
3
1

Safety and coordination

In the following section, we will address
two tasks:

– Protecting critical sections [mutual
exclusion]

– Waiting (efficiently) for conditions to be
satisfied.

Two (similar) approaches:
– Semaphores

– pthread_mutexes

C
S

S
E

2
3
1
0

7
2
3
1

Semaphores

Threads & processes

27

C
S

S
E

2
3
1
0

7
2
3
1

Synchronization

Concurrent access to shared data may result in data
inconsistency

– Remember, concurrent means interleaved threads of
control

Example of problem
int inUse; /* shared var, 1 if resource in use */
Thread One Thread Two
if(!inUse) {

if(!inUse) {
 inUse=1;

 inUse=1;
 /* use resource */ /* use resource */

} }

T
im

e

Variable read
interleaved
between read
and set (write)

28

C
S

S
E

2
3
1
0

7
2
3
1

Processes?

This type of problem can occur whenever
there are shared resources. For
example:

– Files

– Shared variables (if shared memory has
been mapped).

29

C
S

S
E

2
3
1
0

7
2
3
1

Semaphores

Special integer variable
– after initialisation, accessed only through two

atomic operations
• atomic = indivisible

– No interleaving will happen
– Operations on semaphore S

• wait(S) {
 while(S <= 0) {
 ; /* do nothing */
 }
 S--;
}

• signal(S) {
 S++;
}

30

C
S

S
E

2
3
1
0

7
2
3
1

Semaphores (cont.)

wait(S) also known as P(S)
– based on Dutch word Proberen (to test)

signal(S) also known as V(S)
– based on Dutch word Verhogen (to increment)

Semaphore value can never be negative

Need hardware/OS support to ensure that
operations are indivisible

31

C
S

S
E

2
3
1
0

7
2
3
1

How to Use Semaphores

Associate a semaphore S, initially 1, with each shared
variable (or set of shared variables)

Surround corresponding critical section with wait(S) and
signal(S) operations:

wait(S)
 …critical region…
signal(S)

This is a binary semaphore - always 0 or 1

Semaphore ensures mutually exclusive access to critical
region

– Binary semaphores used for mutual exclusion often
called mutexes

32
C

S
S

E
2
3
1
0

7
2
3
1

Semaphores for Shared
Resources

If n resources available, initialise
semaphore to n

– allows up to n users

Generalization of mutex

33

C
S

S
E

2
3
1
0

7
2
3
1

Busy waiting

We wrote:
wait(S) {
 while(S <= 0) {
 ; /* do nothing */
 }
 S--;
}

but OS doesn’t actually busy wait
– Process shifted to waiting queue
– Process shifted to ready queue when semaphore

available
• If more than one process waiting on a particular

semaphore, need to choose process appropriately to
prevent starvation (i.e. one process waiting indefinitely)

34

C
S

S
E

2
3
1
0

7
2
3
1

Deadlock

Some processes may wait forever, e.g.
Process One Process Two

wait(S1); wait(S2);
wait(S2); wait(S1);

… …

signal(S1); signal(S2);
signal(S2); signal(S1);

Need deadlock avoidance strategies
– Beyond scope of this course

May get
stuck here

35

C
S

S
E

2
3
1
0

7
2
3
1

Semaphore APIs

System V Semaphore API
– Very complicated to use

• semget(), semctl(), semop()

POSIX Semaphore API
– “unnamed/memory” semaphores.
– named semaphores.

36

C
S

S
E

2
3
1
0

7
2
3
1

36

POSIX memory semaphores

Only work where all threads/processes can see the memory
the semaphore uses. ie threads in one process or processes
with shared memory.
Disappear when process dies.

sem_t mine;

sem_init(&mine, 0, initval);
 …
sem_wait(&mine);
/* critical section */
sem_post(&mine);
…
sem_destroy(&mine);

37

C
S

S
E

2
3
1
0

7
2
3
1

37

POSIX named semaphores

Identified by name. Processes do not need to share
memory.
Persist until they are explicitly removed or the system is
rebooted.

sem_t* mine=sem_open(“/jsempre”, O_CREAT, initval);
…
sem_wait(&mine);
…
sem_post(&mine);
…
sem_unlink(“/jsempre”);

38
C

S
S

E
2
3
1
0

7
2
3
1

38

Semaphore APIs

POSIX Semaphore API
– sem_wait() /* wait() or P() */
– sem_post() /* signal() or V() */
– Other functions also, e.g.

• sem_getvalue() – return value of semaphore
• sem_trywait() – don’t block if semaphore is 0
• sem_timedwait() – wait, but only for a while

C
S

S
E

2
3
1
0

7
2
3
1

pthread_mutex

● threads

40

C
S

S
E

2
3
1
0

7
2
3
1

Invariants, critical sections and
predicates

Invariants: assumptions about the
relationsip between variables

– eg. state of queue

Critical section: code that affects shared
state

– eg. removing data from queue

Predicate: logical expression to describe
invariant

– eg. “queue is empty”

41

C
S

S
E

2
3
1
0

7
2
3
1

Sharing data revisited

What does the following output?
int count;
int main() {
...
 count = 0;
 /* Create two thread6’s, wait for them to finish */
...
 if (count != ITERATIONS * 2)
 printf("Error: %d\n",count);
...}

void *thread6(void *vargp){
 int i;
 for(i = 0; i < ITERATIONS; i++) count++;
 return NULL;
}

42

C
S

S
E

2
3
1
0

7
2
3
1

Mutex

The idea:
– mutex allows only one thread to access a

resource
– other threads block until the mutex is released

pthread_mutex_t

pthread_mutex_init

pthread_mutex_lock

pthread_mutex_unlock

43

C
S

S
E

2
3
1
0

7
2
3
1

Sharing data with mutexes

What does the following output?int count;
int main() {
...
 count = 0;
 /* Create two thread6’s, wait for them to finish */
...
 if (count != ITERATIONS * 2)
 printf("Error: %d\n",count);
...}
void *thread7(void *vargp){
 int i;
 for(i = 0; i < ITERATIONS; i++){
 pthread_mutex_lock(&mutex);
 count++;
 pthread_mutex_unlock(&mutex);
 }
 return;
} 44

C
S

S
E

2
3
1
0

7
2
3
1

More mutexes

Don’t always want to block
– pthread_mutex_trylock

How big should a mutex be?
– One mutex per variable?
– One mutex for many variables?

45

C
S

S
E

2
3
1
0

7
2
3
1

What happens in the following code?

45

int threadA (void *vargp) {
 pthread_mutex_lock(&mutex1);
 pthread_mutex_lock(&mutex2);

... Do some stuff ...
 pthread_mutex_unlock(&mutex2);
 pthread_mutex_unlock(&mutex1);
 return NULL;
}
int threadB (void *vargp) {
 pthread_mutex_lock(&mutex2);
 pthread_mutex_lock(&mutex1);

... Do some stuff ...
 pthread_mutex_unlock(&mutex1);
 pthread_mutex_unlock(&mutex2);
 return NULL;
} 46

C
S

S
E

2
3
1
0

7
2
3
1

Condition variables

Mutexes make sure only one thread can
access data at a time

What if we want a thread to wait until a
variable reaches a certain value?

Polling

Condition variables
– send signal to threads waiting
– used in conjunction with a mutex

47

C
S

S
E

2
3
1
0

7
2
3
1

Condition variables

An example:
– two threads, one writing to a queue, the

other reading from it
– In order to access the queue, both need to

lock a mutex
– Once locked, the reader discovers the queue

is empty
– Reader waits on a condition variable (which

unlocks the mutex)
– The writer locks the mutex, accesses the

queue, adds an item, unlocks mutex
– The reader’s wait returns, with the mutex

locked again, allowing it to access the queue

48

C
S

S
E

2
3
1
0

7
2
3
1

Condition variables

pthread_cond_t

pthread_cond_init

pthread_cond_destroy

pthread_cond_wait

pthread_cond_timedwait

pthread_cond_signal

pthread_cond_broadcast

49

C
S

S
E

2
3
1
0

7
2
3
1

Condition variables

wait always returns with the associated
mutex locked

use for signalling, NOT mutual exclusion –
that’s what mutexes are for!

condition variable should be associated
with only one predicate

50
C

S
S

E
2
3
1
0

7
2
3
1

Using condition variables

cond.c

Notes:
– Spurious wakeups are possible – need to check

predicate again!
– Check predicate!
– Check return values!

51

C
S

S
E

2
3
1
0

7
2
3
1

Attributes

of threads
– pthread_attr_init

of mutexes
– pthread_mutexattr_setprotocol

of condition variables
– pthread_condattr_init

52

C
S

S
E

2
3
1
0

7
2
3
1

Issues

sleep?

exec?

fork?

Signals?

Shared libraries?

53

C
S

S
E

2
3
1
0

7
2
3
1

Making Single-Threaded Code
Multithreaded

Conflicts between threads over the use of a
global variable (e.g. errno)

54

C
S

S
E

2
3
1
0

7
2
3
1

Thread Safety

Functions called from a thread must be thread-
safe
Beware

– Shared variables
– Static variables in functions
– Relying on persistent state between invocations
– Calling thread-unsafe functions

Examples:
– pread() instead of read()
– localtime_r() instead of localtime()

55

C
S

S
E

2
3
1
0

7
2
3
1

Summary

Threads
– Creating
– Synchronizing using mutexes
– Communicating using condition variables

Programming with threads

