2310

CSSE

2310

7231
Computer
Systems
Principles +

Week 7.1

Files and pipes

School of Information Technology and Electrical Engineering
The University of Queensland

7231

CSSE

Unix Files
- ———sm S ——
A Unix file is a sequence of m bytes:
-By, By,By,...., B,
All I/O devices are represented as files:
— /dev/dsk/c1t1d0s3 (Z/usr disk partition)
— /dev/ttyp2 (terminal)

Even the kernel is represented as a file:
— /dev/kmem (kernel memory image)
— /proc (kernel data structures)

2310
7231

Unix I/O
e

The elegant mapping of files to devices allows
kernel to export simple interface called Unix 1/O.
Key Unix idea: All input and output is handled in
a consistent and uniform way.
Basic Unix I/O operations (system calls):
— Opening and closing files
* open()and close()
— Changing the current file position (seek)
* 1seek
— Reading and writing a file
* read() and write()

CSSE

Programming
CSSE

2310
7231

Outline

Inter-process communication (IPC)

2310

CSSE

2310

CSSE

7231

— File-based IPC - pipes
— Others later in the course

Credits:
— Bryant and O’Halloran, “Computer Systems: A
Programmer’s Perspective”
— Silberschatz et. al, “Operating Systems concepts”
— Rochkind, “Advanced UNIX Programming”

Unix File Types
e ——

Regular file
— Binary or text file.
— Unix does not know the difference!
Directory file
- fAllfile that contains the names and locations of other
iles.
Links
— Symbolic links to other files
Character special and block special files
— Terminals (character special) and disks (block special)
FIFO (named pipe)
— A file type used for interprocess communication
Socket
— Afile type used for network communication between
processes
4

7231

Opening Files

Opening a file informs the kernel that you are getting ready
to access that file.
int fd; /* file descriptor */

if ((fd = open(“/etc/hosts”, 0_RDONLY)) < 0) {
perror (“open”);
exit(1);

}

Returns a small identifying integer file descriptor
- fd == -1 indicates that an error occurred
Each process created by a Unix shell begins life with three
open files associated with a terminal:

— 0: standard input
— 1: standard output
— 2: standard error

2310
7231

CSSE

How the Unix Kernel Represents Open Files

Two descriptors referencing two distinct open disk files.

Descriptor 1 (stdout) points to terminal, and descriptor 4
points to open disk file.

Descriptor table Open filetable v-node table
[one table per process] [shared by all processes] [shared by all processes]
File A (terminal)
stdin fdO =) File access
R File pos Rlese | | Tt
(3 refent=1 Filetype struct
fd4 < : :
Fle B (disk
2B (@5 — | Fileaccess
File pos Filesize
Part of process refent=1 File type
control block : : 7
e
'('})J How Processes Share Files
0p]
®)
A child process inherits its parent’s open files.
Here is the situation immediately after a fork()
. Open file table v-node table
Descriptor tables (shared by (shared by
all processes) all processes)
Parent's table Fle A
fd0 — File access
Ig;] Filepos Flesize
fd3 refent=2 D File type
fd4 ~] :
Child's tabl FileB
fdol kg € L— | Fileaccess
fd1 File pos Filesize
o Gerenzp G
fd4 : : 9
w . .
%) I/O Redirection Example
0
®)

Before calling dup2(4,1), stdout (descriptor 1) points to a
terminal and descriptor 4 points to an open disk file.

Descriptor table Open filetable v-node table
(onetable (shared by (shared by
per process) all processes) all processes)
FileA
. .
stdin fdoO =) File access
stdout fd1] A
stderr fd2 Rilepos Rlesize
fd3 refent=1 File type
e \\—EJE-B— |
File access
File pos Filesize
refcnt=1 F|Iet.ype
: - 11

2310
7231

CSSE

File Sharing

Two distinct descriptors sharing the same disk file through two
distinct open file table entries
- E.g., Calling open() twice with the same filename argument

Descriptor table Open file table v-node table
(onetable (shared by (shared by
per process) all processes) al processes)
FileA
fd0 | I File access
:g; File pos Filesize
fd3 refcnt=1 Fletype
fd4 ~ E H
FileB
File pos
refcnt=1
i 8
a8
L /0 Redirecti
n edirection
(0]
O
Question: How does a shell implement I/O redirection?
— unix> 1ls > foo.txt
Answer: By calling the dup2(oldfd, newfd) function
— Copies (per-process) descriptor table entry oldfd to entry
newfd
Descriptor table Descriptor table
beforedup2(4,1) after dup2(4,1)
fdO fdo
fdlija fd1|b
o —
fd3 fd3
fd4|b fd4|b
10 10
("}J) I/O Redirection Example (cont)
(79}
o

After calling dup2(4,1), stdout is now redirected to the disk
file pointed at by descriptor 4.

Descriptor table Open file table v-node table
(onetable (shared by (shared by
per process) all processes) al processes)
. FleA_ ___ [T
fdo ! e ! File access
fd1 File size
fd2 File pos
fd3 Crefcnt=0 > File type
fd4 ~ I .
—Hel o —"TFieaccess
refcount now File pos File size
zero; OS can refent=2 hiletpe
recover memory : i 12

2310
7231

CSSE

2310

CSSE

Break

7231

Bidirectional Pipes

e —

Pipes can be bidirectional in most modern
0OSs

— Unidirectional in early UNIXes
— Not portable though - often best to create two
unidirectional pipes
Can’t create bidirectional pipes using
shell!
— Individual processes can create bidirectional

pipes

2310
7231

pipe() System Call

CSSE

To be shown in class

2310
7231

CSSE

2310

CSSE

Pipes

Easy to create using a shell...
Examples
- 1s | more

-who | we -1
* Number of login sessions on machine
- who -q will report something similar

-who | cut -d " " -f1 | sort | uniq | wc -1
* Number of distinct users
Output of one program (standard output) is input
to next (standard input)

14

7231

Pipe behaviour

e —

Explained in lectures

16

2310
7231

Connecting processes

CSSE

Q: How can you create a pipe between two arbitrary
processes?
A: You can’t - process can’t pass a meaningful file
descriptor to another process
How to do it then?

— Create pipe and then fork() - processes will share file

descriptors

Processes communicating via (non-named) pipes must
therefore be related, e.g.

— parent, child

— siblings of a common parent (e.g. as in shell)

— grand-parent, grand-child

- etc
18

2310
7231

CSSE

- e————

To be provided

Pipe example

19

2310
7231

CSSE

Unix I/O vs Standard C
B ————

To use standard C stream 1/O like fscanf, printf

we need FILE* but open, pipe etc return file

descriptors (int).

stdin(®), stdout(1) and stderr(2) are already

defined so we could dup2() into those descriptors.
— What if you wanted to keep talking to the previous

stdin?
Alternativley use the fdopen() function to get a
steam(FILE*) from a file descriptor .

