
School of Information Technology and Electrical Engineering
The University of Queensland

C
S

S
E

2
3
1
0

7
2
3
1

C
om

pu
te

r
S

ys
te

m
s

P
rin

ci
pl

es
 +

P

ro
gr

am
m

in
g

Week 7.1

Files and pipes

2
C

S
S

E
2
3
1
0

7
2
3
1

Outline

Inter-process communication (IPC)
– File-based IPC – pipes
– Others later in the course

Credits:
– Bryant and O’Halloran, “Computer Systems: A

Programmer’s Perspective”
– Silberschatz et. al, “Operating Systems concepts”
– Rochkind, “Advanced UNIX Programming”

3

C
S

S
E

2
3
1
0

7
2
3
1

Unix Files

A Unix file is a sequence of m bytes:
– B0, B1, , Bk , , Bm-1

All I/O devices are represented as files:
– /dev/dsk/c1t1d0s3 (/usr disk partition)
– /dev/ttyp2 (terminal)

Even the kernel is represented as a file:
– /dev/kmem (kernel memory image)
– /proc (kernel data structures)

4

C
S

S
E

2
3
1
0

7
2
3
1

Unix File Types

Regular file
– Binary or text file.
– Unix does not know the difference!

Directory file
– A file that contains the names and locations of other

files.
Links

– Symbolic links to other files
Character special and block special files

– Terminals (character special) and disks (block special)
FIFO (named pipe)

– A file type used for interprocess communication
Socket

– A file type used for network communication between
processes

5

C
S

S
E

2
3
1
0

7
2
3
1

Unix I/O

The elegant mapping of files to devices allows
kernel to export simple interface called Unix I/O.
Key Unix idea: All input and output is handled in
a consistent and uniform way.
Basic Unix I/O operations (system calls):

– Opening and closing files
• open()and close()

– Changing the current file position (seek)
• lseek

– Reading and writing a file
• read() and write()

6

C
S

S
E

2
3
1
0

7
2
3
1

Opening Files

Opening a file informs the kernel that you are getting ready
to access that file.

Returns a small identifying integer file descriptor
– fd == -1 indicates that an error occurred

Each process created by a Unix shell begins life with three
open files associated with a terminal:

– 0: standard input
– 1: standard output
– 2: standard error

int fd; /* file descriptor */

if ((fd = open(“/etc/hosts”, O_RDONLY)) < 0) {
 perror(“open”);
 exit(1);
}

7

C
S

S
E

2
3
1
0

7
2
3
1

How the Unix Kernel Represents Open Files

Two descriptors referencing two distinct open disk files.
Descriptor 1 (stdout) points to terminal, and descriptor 4
points to open disk file.

fd 0
fd 1
fd 2
fd 3
fd 4

Descriptor table
[one table per process]

Open file table
[shared by all processes]

v-node table
[shared by all processes]

File pos
refcnt=1

...

File pos
refcnt=1

...

stderr
stdout
stdin File access

...

File size

File type

File access

...

File size

File type

File A (terminal)

File B (disk)

Info in
stat
struct

Part of process
control block 8

C
S

S
E

2
3
1
0

7
2
3
1

File Sharing

Two distinct descriptors sharing the same disk file through two
distinct open file table entries

– E.g., Calling open() twice with the same filename argument

fd 0
fd 1
fd 2
fd 3
fd 4

Descriptor table
(one table
per process)

Open file table
(shared by
all processes)

v-node table
(shared by
all processes)

File pos
refcnt=1

...

File pos
refcnt=1

...

File access

...

File size

File type

File A

File B

9

C
S

S
E

2
3
1
0

7
2
3
1

How Processes Share Files

A child process inherits its parent’s open files.
Here is the situation immediately after a fork()

fd 0
fd 1
fd 2
fd 3
fd 4

Descriptor tables
Open file table
(shared by
all processes)

v-node table
(shared by
all processes)

File pos
refcnt=2

...

File pos
refcnt=2

...

Parent's table

fd 0
fd 1
fd 2
fd 3
fd 4

Child's table

File access

...

File size

File type

File access

...

File size

File type

File A

File B

10

C
S

S
E

2
3
1
0

7
2
3
1

10

I/O Redirection

Question: How does a shell implement I/O redirection?
– unix> ls > foo.txt

Answer: By calling the dup2(oldfd, newfd) function
– Copies (per-process) descriptor table entry oldfd to entry

newfd

a

b

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
before dup2(4,1)

b

b

fd 0

fd 1

fd 2

fd 3

fd 4

Descriptor table
after dup2(4,1)

11

C
S

S
E

2
3
1
0

7
2
3
1

I/O Redirection Example

Before calling dup2(4,1), stdout (descriptor 1) points to a
terminal and descriptor 4 points to an open disk file.

fd 0
fd 1
fd 2
fd 3
fd 4

Descriptor table
(one table
per process)

Open file table
(shared by
all processes)

v-node table
(shared by
all processes)

File pos
refcnt=1

...

File pos
refcnt=1

...

stderr
stdout
stdin File access

...

File size

File type

File access

...

File size

File type

File A

File B

12

C
S

S
E

2
3
1
0

7
2
3
1

I/O Redirection Example (cont)

After calling dup2(4,1), stdout is now redirected to the disk
file pointed at by descriptor 4.

fd 0
fd 1
fd 2
fd 3
fd 4

Descriptor table
(one table
per process)

Open file table
(shared by
all processes)

v-node table
(shared by
all processes)

File pos
refcnt=0

...

File pos
refcnt=2

...

File access

...

File size

File type

File access

...

File size

File type

File A

File B

refcount now
zero; OS can
recover memory

13

C
S

S
E

2
3
1
0

7
2
3
1

Break

14
C

S
S

E
2
3
1
0

7
2
3
1

Pipes

Easy to create using a shell…

Examples
– ls | more
– who | wc –l

• Number of login sessions on machine
– who –q will report something similar

– who | cut –d " " –f1 | sort | uniq | wc –l
• Number of distinct users

Output of one program (standard output) is input
to next (standard input)

15

C
S

S
E

2
3
1
0

7
2
3
1

Bidirectional Pipes

Pipes can be bidirectional in most modern
OSs

– Unidirectional in early UNIXes
– Not portable though – often best to create two

unidirectional pipes

Can’t create bidirectional pipes using
shell!

– Individual processes can create bidirectional
pipes

16

C
S

S
E

2
3
1
0

7
2
3
1

Pipe behaviour

Explained in lectures

17

C
S

S
E

2
3
1
0

7
2
3
1

pipe() System Call

To be shown in class

18

C
S

S
E

2
3
1
0

7
2
3
1

Connecting processes

Q: How can you create a pipe between two arbitrary
processes?

A: You can’t - process can’t pass a meaningful file
descriptor to another process

How to do it then?
– Create pipe and then fork() – processes will share file

descriptors

Processes communicating via (non-named) pipes must
therefore be related, e.g.

– parent, child
– siblings of a common parent (e.g. as in shell)
– grand-parent, grand-child
– etc

19

C
S

S
E

2
3
1
0

7
2
3
1

Pipe example

To be provided

20
C

S
S

E
2
3
1
0

7
2
3
1

Unix I/O vs Standard C

To use standard C stream I/O like fscanf, printf
we need FILE* but open, pipe etc return file
descriptors (int).
stdin(0), stdout(1) and stderr(2) are already
defined so we could dup2() into those descriptors.

– What if you wanted to keep talking to the previous
stdin?

Alternativley use the fdopen() function to get a
steam(FILE*) from a file descriptor .

