
School of Information Technology and Electrical Engineering
The University of Queensland

C
S

S
E

2
3
1
0

7
2
3
1

C
om

pu
te

r
S

ys
te

m
s

P
rin

ci
pl

es
 +

P

ro
gr

am
m

in
g

Week 6.1

Processes

2

C
S

S
E

2
3
1
0

7
2
3
1

References

Credits:
 Glass & Ables (pages 472 to 489, 584 to 590, 600 to

606)
 Bryant and O’Halloran, “Computer Systems: A

Programmer’s Perspective”
 Silberschatz et. al, “Operating Systems concepts”
 Tanenbaum, “Modern Operating Systems”
 Rochkind, “Advanced UNIX Programming”

3

C
S

S
E

2
3
1
0

7
2
3
1

Recall from Week Three

Operating Systems provide abstractions to
 make computer hardware easier to use

 for user, programmer, system administrator…
 manage hardware resources

Example abstractions

Abstraction Resource

Virtual Memory Memory

Processes CPU time+

Files Disk space

4

C
S

S
E

2
3
1
0

7
2
3
1

Processes

Definition: A process is an instance of a running program
 One of the most profound ideas in computer science
 Not the same as “program” or “processor”

Process provides each program with key abstractions:
 Logical control flow

 Each program seems to have exclusive use of the CPU
 Private address space

 Each program seems to have exclusive use of main
memory

 A collection of system resources.

How are these illusions maintained?
 Process executions interleaved (multitasking)
 Address spaces managed by virtual memory system

 Each process has its own address space.

5

C
S

S
E

2
3
1
0

7
2
3
1

Logical Control Flows

Each process has its own logical control flow

Time

Process A Process B Process C

6

C
S

S
E

2
3
1
0

7
2
3
1

Concurrent Processes

Two processes run concurrently (are concurrent) if their
flows overlap in time
Otherwise, they are sequential
Examples:

 Concurrent: A & B, A & C
 Sequential: B & C

Time

Process A Process B Process C

7

C
S

S
E

2
3
1
0

7
2
3
1

User View of Concurrent Processes

Control flows for concurrent processes are
physically disjoint in time
However, user can think of concurrent
processes as running in parallel with each other

Time
Process A Process B Process C

8

C
S

S
E

2
3
1
0

7
2
3
1

fork: Creating new processes

int fork(void)
 creates a new process (child process)

child is identical to calling process (parent process)
 returns 0 to the child process
 returns child’s pid to the parent process

pid = process-id (numerical id)

pid_t pid=fork();
if (pid == 0) {
 printf("hello from child\n");
} else {
 printf("hello from parent\n");
}

Fork is interesting
(and often confusing)
because when it is called,
there is one process, when
it returns, there are two

9

C
S

S
E

2
3
1
0

7
2
3
1

9

Fork Example #1

Key Points
 Parent and child both run same code

 Distinguish parent from child by return value from fork
 Start with same state, but each has private copy

 Including shared output file descriptor
 Relative ordering of their print statements undefined

void fork_one()
{
 int x = 1;
 pid_t pid = fork();
 if (pid == 0) {

printf("Child has x = %d\n", ++x);
 } else {

printf("Parent has x = %d\n", --x);
 }
 printf("Bye from process %d with x = %d\n", getpid(), x);
}

10

C
S

S
E

2
3
1
0

7
2
3
1

Fork Example #2

Both parent and child can continue forking

void fork2()
{
 printf("L0\n");
 fork();
 printf("L1\n");
 fork();
 printf("Bye\n");
}

L0 L1

L1

Bye

Bye

Bye

Bye

11

C
S

S
E

2
3
1
0

7
2
3
1

Fork Example #3

As many times as they like…

void fork3()
{
 printf("L0\n");
 fork();
 printf("L1\n");
 fork();
 printf("L2\n");
 fork();
 printf("Bye\n");
}

L1 L2

L2

Bye

Bye

Bye

Bye

L1 L2

L2

Bye

Bye

Bye

Bye

L0

12

C
S

S
E

2
3
1
0

7
2
3
1

Fork Example #4

Common for parent to be the only one to
continue forking

void fork4()
{
 printf("L0\n");
 if (fork() != 0) {

printf("L1\n");
if (fork() != 0) {
 printf("L2\n");
 fork();
}

 }
 printf("Bye\n");
}

L0 L1

Bye

L2

Bye

Bye

Bye

13

C
S

S
E

2
3
1
0

7
2
3
1

Fork Example #5

But it could be just the child…

void fork5()
{
 printf("L0\n");
 if (fork() == 0) {

printf("L1\n");
if (fork() == 0) {
 printf("L2\n");
 fork();
}

 }
 printf("Bye\n");
}

L0 Bye

L1

Bye

Bye

Bye

L2

C
S

S
E

2
3
1
0

7
2
3
1

Break

15

C
S

S
E

2
3
1
0

7
2
3
1

15

exit: Destroying Process

void exit(int status)
 exits a process

Status 0 for no error.

atexit(void (*func)(void))
 registers functions to be executed upon exit
 Argument to atexit() is a function pointer
 Functions called in

reverse order of
registration
Functions not

called if process
exits abnormally

void cleanup(void) {
 printf("cleaning up\n");
}

void fork6() {
 atexit(cleanup);
 fork();
 exit(0);
}

16

C
S

S
E

2
3
1
0

7
2
3
1

exit (continued)

exit() – buffers are flushed, files are closed
return from main() is the same as exit() at
that point

 Any registered exit functions will be executed
_exit() [Note the underscore]

 Will not run the registered functions
 May not flush buffers
 Can be used for child processes, so as to not

interfere with parent

17

C
S

S
E

2
3
1
0

7
2
3
1

Zombies

Idea
 When process terminates, still consumes system

resources
 Various tables maintained by OS

 Called a “zombie”
 Living corpse, half alive and half dead

Reaping
 Performed by parent on terminated child
 Parent is given exit status information
 Kernel discards process

What if Parent Doesn’t Reap?
 If any parent terminates without reaping a child, then

child will be adopted by & later reaped by init process
 Only need explicit reaping for long-running processes

 E.g., shells and servers

18

C
S

S
E

2
3
1
0

7
2
3
1

=> ./forks 7 &
[1] 6639
Running Parent, PID = 6639
Terminating Child, PID = 6640
=> ps
 PID TTY TIME CMD
 6585 ttyp9 00:00:00 tcsh
 6639 ttyp9 00:00:03 forks
 6640 ttyp9 00:00:00 forks <defunct>
 6641 ttyp9 00:00:00 ps
=> kill 6639
[1] Terminated
=> ps
 PID TTY TIME CMD
 6585 ttyp9 00:00:00 tcsh
 6642 ttyp9 00:00:00 ps

Zombie
Example

ps shows child
process as “defunct”
Killing parent allows
child to be reaped

void fork7()
{
 if (fork() == 0) {

/* Child */
printf("Terminating Child, PID = %d\n",
 getpid());
exit(0);

 } else {
printf("Running Parent, PID = %d\n",
 getpid());
while (1)
 ; /* Infinite loop */

 }
}

19

C
S

S
E

2
3
1
0

7
2
3
1

=> ./forks 8
Terminating Parent, PID = 6675
Running Child, PID = 6676
=> ps
 PID TTY TIME CMD
 6585 ttyp9 00:00:00 tcsh
 6676 ttyp9 00:00:06 forks
 6677 ttyp9 00:00:00 ps
=> kill 6676
=> ps
 PID TTY TIME CMD
 6585 ttyp9 00:00:00 tcsh
 6678 ttyp9 00:00:00 ps

Nonterminating
Child

Example

Child process still active
even though parent has
terminated
Must kill explicitly, or
else will keep running
indefinitely

void fork8()
{
 if (fork() == 0) {

/* Child */
printf("Running Child, PID = %d\n",
 getpid());
while (1)
 ; /* Infinite loop */

 } else {
printf("Terminating Parent, PID = %d\n",
 getpid());
exit(0);

 }
}

20

C
S

S
E

2
3
1
0

7
2
3
1

wait: Synchronizing with children

int wait(int *child_status)
 suspends current process until one of its

children terminates
 return value is the pid of the child process that

terminated
 if child_status != NULL, then the object it

points to will be set to a status indicating why
the child process terminated

21

C
S

S
E

2
3
1
0

7
2
3
1

wait: Synchronizing with children
(cont.)

void fork9() {
 int child_status;

 if (fork() == 0) {
 printf("HC: hello from child\n");
 }
 else {
 printf("HP: hello from parent\n");
 wait(&child_status);
 printf("CT: child has terminated\n");
 }
 printf("Bye\n");
 exit(0);
}

HP

HC Bye

CT Bye

22

C
S

S
E

2
3
1
0

7
2
3
1

22

Wait Example

If multiple children completed, will take in arbitrary order
Can use macros WIFEXITED and WEXITSTATUS to get
information about exit status

void fork10() {
 pid_t pid[N];
 int i;
 int child_status;
 for (i = 0; i < N; i++)

if ((pid[i] = fork()) == 0)
 exit(100+i); /* Child */

 for (i = 0; i < N; i++) {
pid_t wpid = wait(&child_status);
if (WIFEXITED(child_status))
 printf("Child %d terminated with exit status %d\n",

 wpid, WEXITSTATUS(child_status));
else
 printf("Child %d terminate abnormally\n", wpid);

 }
}

23

C
S

S
E

2
3
1
0

7
2
3
1

23

Waitpid

waitpid(pid, &status, options)
 Can wait for specific process
 Various options

void fork11()
{
 pid_t pid[N];
 int i;
 int child_status;
 for (i = 0; i < N; i++)

if ((pid[i] = fork()) == 0)
 exit(100+i); /* Child */

 for (i = 0; i < N; i++) {
pid_t wpid = waitpid(pid[i], &child_status, 0);
if (WIFEXITED(child_status))
 printf("Child %d terminated with exit status %d\n",

 wpid, WEXITSTATUS(child_status));
else
 printf("Child %d terminated abnormally\n", wpid);

 }

24

C
S

S
E

2
3
1
0

7
2
3
1

Wait/Waitpid Example Outputs

Child 3565 terminated with exit status 103
Child 3564 terminated with exit status 102
Child 3563 terminated with exit status 101
Child 3562 terminated with exit status 100
Child 3566 terminated with exit status 104

Child 3568 terminated with exit status 100
Child 3569 terminated with exit status 101
Child 3570 terminated with exit status 102
Child 3571 terminated with exit status 103
Child 3572 terminated with exit status 104

Using wait (fork10)

Using waitpid (fork11)

25

C
S

S
E

2
3
1
0

7
2
3
1

exec: Running new programs

int execl(char *path, char *arg0, char *arg1, …, 0)
 loads and runs executable at path with args arg0, arg1, …

 path is the complete path of an executable
 arg0 becomes the name of the process

– typically arg0 is either identical to path, or else it contains only
the executable filename from path

 “real” arguments to the executable start with arg1, etc.
 list of args is terminated by a (char *)0 argument

 returns -1 if error, otherwise doesn’t return!

main() {
 if (fork() == 0) {
 execl("/usr/bin/ls", “ls", “-al”, 0);
 }
 wait(NULL);
 printf(“Listing completed\n");
 exit(0);
}

26

C
S

S
E

2
3
1
0

7
2
3
1

exec variations

execl()

execv()

execle()

l – arguments directly in call (list)
v – arguments in array (vector)
p – use PATH to find program

 Otherwise provide full path of program
e – provide environment definition

See exec man page for details (man –s2 exec on agave)

execve()

execlp()

execvp()

27

C
S

S
E

2
3
1
0

7
2
3
1

System Call Summary

Basic Functions
 fork() spawns new process

 Called once, returns in two processes
 exit() terminates own process

 Called once, never returns
 Puts it into “zombie” status

 wait() and waitpid() wait for and reap terminated
children

 execl() and variants run a new program in an existing
process
 Called once, (normally) never returns

28

C
S

S
E

2
3
1
0

7
2
3
1

Programming with Processes

Programming Challenges
 Understanding the nonstandard semantics of the

functions
 Avoiding improper use of system resources

E.g. “Fork bombs” can disable a system.

Resource sharing options
 Parent and children share all resources
 Children share subset of parent’s resources
 Parent and child share no resources

Execution options
 Parent and children execute concurrently
 Parent waits until children terminate

29

C
S

S
E

2
3
1
0

7
2
3
1

Useful UNIX

ps
top
kill
xargs

30

C
S

S
E

2
3
1
0

7
2
3
1

Unix Process Hierarchy

Login shell

ChildChildChild

GrandchildGrandchild

[0]

Daemons
e.g. httpd

init [1]
Servers

31

C
S

S
E

2
3
1
0

7
2
3
1

Unix Startup: Step 1

1. On reset, CPU starts a small bootstrap program
2. Bootstrap program loads the boot block (disk block 0)
3. Boot block program loads kernel binary (e.g.,

/boot/vmlinux)
4. Boot block program passes control to kernel
5. Kernel handcrafts the data structures for process 0

init [1]

[0] Process 0: handcrafted kernel process

Child process 1 execs /sbin/init

Process 0 forks child process 1

32

C
S

S
E

2
3
1
0

7
2
3
1

Unix Startup: Step 2

init [1]

[0]

gettyDaemons
e.g. ftpd, httpd

/etc/inittab
init forks and execs
daemons per
/etc/inittab, and forks
and execs a getty program
for the console

33

C
S

S
E

2
3
1
0

7
2
3
1

Unix Startup: Step 3

init [1]

[0]

The getty process
execs a login
program

login

34

C
S

S
E

2
3
1
0

7
2
3
1

Unix Startup: Step 4

init [1]

[0]

login reads login and passwd.
if OK, it execs a shell.
if not OK, it execs another getty

bash

35

C
S

S
E

2
3
1
0

7
2
3
1

Shell Programs

A shell is an application program that runs
programs on behalf of the user.

 sh – Original Unix Bourne Shell
 csh – BSD Unix C Shell, tcsh – Enhanced C Shell
 bash –Bourne-Again Shell

int main()
{
 char cmdline[MAXLINE];

 while (1) {
/* read */
printf("> ");
fgets(cmdline, MAXLINE, stdin);
if (feof(stdin))
 exit(0);
/* evaluate */
eval(cmdline);

 }
}

 Execution is a
sequence of
read/evaluate steps

36

C
S

S
E

2
3
1
0

7
2
3
1

Simple Shell eval Function
void eval(char *cmdline)
{
 char *argv[MAXARGS]; /* argv for execve() */
 int bg; /* should the job run in bg or fg? */
 pid_t pid; /* process id */

 bg = parseline(cmdline, argv);
 if (!builtin_command(argv)) {

if ((pid = fork()) == 0) { /* child runs user job */
 if (execve(argv[0], argv, environ) < 0) {

printf("%s: Command not found.\n", argv[0]);
exit(0);

 }
}

if (!bg) { /* parent waits for fg job to terminate */
 int status;

 if (waitpid(pid, &status, 0) < 0)
unix_error("waitfg: waitpid error");

}
else /* otherwise, don’t wait for bg job */
 printf("%d %s", pid, cmdline);

 }
}

37

C
S

S
E

2
3
1
0

7
2
3
1

Problem with Simple Shell Example

Shell correctly waits for and reaps foreground
jobs
But what about background jobs?

 Will become zombies when they terminate
 Will never be reaped because shell (typically) will

not terminate
 Creates a memory leak that will eventually crash

the kernel when it runs out of memory
Solution: Reaping background jobs requires a
mechanism called a signal

38

C
S

S
E

2
3
1
0

7
2
3
1

Signals

A signal is a small message that notifies a process that an event of
some type has occurred in the system

 Kernel abstraction for exceptions and interrupts
 Sent from the kernel (sometimes at the request of another

process) to a process
 Different signals are identified by small integer IDs
 Only information in a signal is its ID and the fact that it arrived
 More on signals later (inter-process communication)

ID Name Default Action Corresponding Event

2 SIGINT Terminate Interrupt from keyboard (Ctrl-c)

9 SIGKILL Terminate Kill program (cannot override or ignore)

11 SIGSEGV Terminate Segmentation violation

14 SIGALRM Terminate Timer signal

17 SIGCHLD Ignore Child stopped or terminated

39

C
S

S
E

2
3
1
0

7
2
3
1

Signal Handling

An application program can specify a function called a signal handler
to be invoked when a specific signal is received. A process can deal
with a signal in one of the following ways:

 The process can let the default action happen
 The process can block the signal (some signals cannot be ignored)
 the process can catch the signal with a handler.

To establish a signal handler:
 #include <signal.h>

 int sigaction(int signum, const struct sigaction
*act, struct sigaction *oldact);

 To see what is in struct sigaction look at the man
page.

 There is an older function with a simpler interface called
signal but it isn't as predictable.

40

C
S

S
E

2
3
1
0

7
2
3
1

Signal Handling

#include <signal.h>
#include <stdio.h>

void dostuff(int s) {
 fprintf(stderr, "Got signal %d\n",s);
}

int main(int argc, char** argv) {
 struct sigaction sa;
 sa.sa_handler=dostuff;
 sa.sa_flags=SA_RESTART; // restart syscalls if interrupted
 sigaction(SIGINT, &sa, 0);
 while (1){sleep(10);}
}

41

C
S

S
E

2
3
1
0

7
2
3
1

Process States (1)

Possible process states
 running
 blocked
 ready

Transitions between states shown

42

C
S

S
E

2
3
1
0

7
2
3
1

Process States (2)

Lowest layer of process-structured OS
 handles interrupts, scheduling

Above that layer are sequential processes

1 2

43

C
S

S
E

2
3
1
0

7
2
3
1

Implementation of Processes

Fields of a process control block
 Data structure - one per process
 Contains information about the process

44

C
S

S
E

2
3
1
0

7
2
3
1

Context Switch

When CPU switches to another process,
the system must

 save the state of the old process; and
 load the saved state for the new process

Context-switch time is overhead
 system does no useful work while switching
 Time is dependent on hardware support

45

C
S

S
E

2
3
1
0

7
2
3
1

Context Switch (cont.)

Time

46

C
S

S
E

2
3
1
0

7
2
3
1

Process Scheduling Queues

Job queue – set of all processes in the
system
Ready queue – set of all processes
residing in main memory, ready and
waiting to execute
Device queues – set of processes waiting
for an I/O device
Processes migrate between the various
queues

47

C
S

S
E

2
3
1
0

7
2
3
1

Ready Queue And Various
I/O Device Queues

48

C
S

S
E

2
3
1
0

7
2
3
1

Representation of Process Scheduling

49

C
S

S
E

2
3
1
0

7
2
3
1

Schedulers

Long-term scheduler (or job scheduler) –
selects which processes should be brought into
the ready queue
Short-term scheduler (or CPU scheduler) –
selects which process should be executed next
and allocates CPU

50

C
S

S
E

2
3
1
0

7
2
3
1

Schedulers (Cont.)

Short-term scheduler is invoked very frequently
(milliseconds) ⇒ (must be fast)
Long-term scheduler is invoked very infrequently (seconds)
⇒ (may be slow)
The long-term scheduler controls the degree of
multiprogramming
Processes can be described as either:

 I/O-bound process – spends more time doing I/O
than computations, many short CPU bursts

 CPU-bound process – spends more time doing
computations; few very long CPU bursts

Scheduling algorithms are a topic for the Operating
Systems Architecture course (COMP3301)

51

C
S

S
E

2
3
1
0

7
2
3
1

Reminder…

Assignment Two – due tonight
Mid-semester exam this Friday

