
School of Information Technology and Electrical Engineering
The University of Queensland

C
S

S
E

2
3
1
0

7
2
3
1

C
om

pu
te

r
S

ys
te

m
s

P
rin

ci
pl

es
 +

P

ro
gr

am
m

in
g

Week 5.2

Virtual memory

2

C
S

S
E

2
3
1
0

7
2
3
1

Coming up

l Lectures - Today
n Memory Management

l Virtual Memory
l Tuesday

n debugging and Ass2
l Friday week

n User-space memory management.
l Memory bugs

3

C
S

S
E

2
3
1
0

7
2
3
1

Recall from Week One

l Operating Systems provide abstractions to
n make computer hardware easier to use

l for user, programmer, system administrator…
n manage hardware resources

l Example abstractions

Abstraction Resource

Virtual Memory Memory

Processes CPU time+
Sockets, etc Network

File systems Disk space

4

C
S

S
E

2
3
1
0

7
2
3
1

Objectives of Memory
Management

l In a system with multiple running processes,
program can not know code/data addresses
before execution

n Need to support relocation
l Program logical addresses might not be the

same as physical memory addresses
n Need to support address translation

l Processes should not (in general) be
permitted to access memory allocated to
other processes

n Need to support protection

5

C
S

S
E

2
3
1
0

7
2
3
1

Objectives of Memory
Management (cont.)

l Sometimes, multiple processes should be
able to access the same memory

n Need to support memory sharing
l Processes can dynamically change the

amount of memory they need to access
n Need to support allocation

l Processes may need more memory than a
machine physically has

n Need to support paging (aka swapping)
l data is moved between primary storage (memory)

and secondary storage (disk)

6

C
S

S
E

2
3
1
0

7
2
3
1

Virtual Memory

l Virtual memory is an abstraction that
helps in the management of memory

n Processes see a virtual memory that is
different from the physical memory

l e.g.
– different size (smaller or larger)
– different addresses

n Can be used to support the objectives
listed on prior slides

7

C
S

S
E

2
3
1
0

7
2
3
1

A System with Physical
Memory Only

l Examples:
n most Cray machines, early PCs,

nearly all embedded systems, etc.

l Addresses generated by the CPU correspond directly to
bytes in physical memory

CPU

0:
1:

N-1:

Memory

Physical
Addresses

8

C
S

S
E

2
3
1
0

7
2
3
1

A System with Virtual
Memory

l Examples:
n workstations, servers, modern PCs, etc.

l Address Translation: Hardware converts virtual addresses
to physical addresses via OS-managed lookup table
(page table)

CPU

0:
1:

N-1:

Memory

0:
1:

P-1:

Page Table

Disk

Virtual
Addresses

Physical
Addresses

9

C
S

S
E

2
3
1
0

7
2
3
1

Paging

l One of several methods of implementing virtual memory
l Divide physical memory into fixed-sized blocks called

page frames
n size is power of 2, usually between 512 bytes and 8192

bytes
l Divide logical memory into blocks of same size called

pages
l Keep track of all free page frames
l To run a program of size n pages, need to find n free

frames and load program
l Set up a page table to translate logical to physical

addresses

10

C
S

S
E

2
3
1
0

7
2
3
1

Address Translation
Scheme

l Address generated by CPU is divided
into:

n Page number (p) – used as an index into
a page table which contains base address
of each page in physical memory

n Page offset (d) – combined with base
address to define the physical memory
address that is sent to the memory unit

p dAddress:

11

C
S

S
E

2
3
1
0

7
2
3
1

Address Translation
Architecture

12

C
S

S
E

2
3
1
0

7
2
3
1

Paging Example

C
S

S
E

2
3
1
0

7
2
3
1

 BREAK

14

C
S

S
E

2
3
1
0

7
2
3
1

Free Frames

Before allocation After allocation

15

C
S

S
E

2
3
1
0

7
2
3
1

Implementation of Page
Table

l Page table is kept in main memory
l In this scheme every data/instruction access

requires two memory accesses
n One for the page table and one for the

data/instruction
l The two memory access problem can be

solved by the use of a special fast-lookup
hardware cache called associative memory or
translation look-aside buffers (TLBs)

16

C
S

S
E

2
3
1
0

7
2
3
1

Aside: Associative
Memory

l Associative memory allows parallel search

Address translation (A´, A´´)
n If A´ is in associative register, get frame # out.
n Otherwise get frame # from page table in

memory

Page # Frame #

17

C
S

S
E

2
3
1
0

7
2
3
1

Paging Hardware With TLB

18

C
S

S
E

2
3
1
0

7
2
3
1

Page Faults

l What if an object is on disk rather than in memory?
n Page table entry indicates virtual address not in memory
n OS exception handler invoked to move data from disk

into memory
l current process suspended, others can resume
l OS has full control over placement, etc.

CPU

Memory

Page Table

Disk

Virtual
Addresses

Physical
Addresses

CPU

Memory

Page Table

Disk

Virtual
Addresses

Physical
Addresses

Before fault After fault

19

C
S

S
E

2
3
1
0

7
2
3
1

Page Replacement
Algorithms

l On a page fault, which page should be removed to make
space for incoming page?

n Optimal approach – choose page not needed until
furthest in future

l Impossible to predict the future!
l Many algorithms possible

n NRU - Not recently used
n FIFO - First-in, First-out
n LRU - Least Recently Used
n NFU - Not Frequently Used
n Clock
n Working Set
n Working Set Clock

l Not a topic for this course

20

C
S

S
E

2
3
1
0

7
2
3
1

Memory Protection

l Memory protection implemented by
associating protection bit with each frame

l Valid-invalid bit attached to each entry in the
page table:

n “valid” indicates that the associated page is in
the process’ logical address space, and is thus a
legal page

n “invalid” indicates that the page is not in the
process’ logical address space

21

C
S

S
E

2
3
1
0

7
2
3
1

Memory protection (ctd)

Page 0

Page 1

Page 2

Page 3

Page 4

2 v

3 v

6 v

5 v

8 v

0 I

0 I

Page 0

Page 1

Page 3

Page 2

Page 4

read/write/
execute

0

1024

5120

22

C
S

S
E

2
3
1
0

7
2
3
1

Segmentation Faults

l Segmentation Fault arises when
n Accessing invalid memory page
n Trying to write to a read-only page

23

C
S

S
E

2
3
1
0

7
2
3
1

Virtual
Address
Space for
Process 1:

Physical
Address
Space

VP 1
VP 2

PP 2

Address Translation0

0

N-1

0

N-1 M-1

VP 1
VP 2

PP 7

PP 10

(e.g., read/only
library code)

Separate Virtual Address
Spaces

l Each process has its own virtual address space
n separate page tables
n some pages may be shared

...

...

Virtual
Address
Space for
Process 2:

24

C
S

S
E

2
3
1
0

7
2
3
1

Shared Pages

l Shared code
n One copy of read-only code shared among processes

(i.e., text editors, compilers, window systems)
n Shared code must appear in same location in the virtual

address space of all processes.

l Private code and data
n Each process keeps a separate copy of the code and

data
n The pages for the private code and data can appear

anywhere in the virtual address space
l Data can be shared also

n Pages can be at different locations in the virtual address
spaces of each process

25

C
S

S
E

2
3
1
0

7
2
3
1

25

Shared Pages Example

26

C
S

S
E

2
3
1
0

7
2
3
1

Multi-Level Page Tables

l Example:
n 4kB (212 bytes) page size
n 32-bit address space
n 4-byte page table entry

l Problem:
n Would need a 4 MB page table!

l 220 *4 bytes
l Common solution

n multi-level page tables
n e.g. 2-level table (Intel processors)

l Level 1 table: 1024 entries, each of
which points to a Level 2 page table.

l Level 2 table: 1024 entries, each of
which points to a page

l Note – page tables at each level typically
occupy one full page (4kB in this example)

Level 1
Table

...

Level 2
Tables

27

C
S

S
E

2
3
1
0

7
2
3
1

Example

l Given multi-level page table structure as described on
previous slide, how much memory is needed for the
page table(s) for a process using 512MB of memory?

l What about for a process using 1MB of memory?

l Remember
n 512MB = 29MB = 29 x 210 x 210 bytes
n 1MB = 220bytes

28

C
S

S
E

2
3
1
0

7
2
3
1

Exercise

You have 2 minutes

l Consider a system with 36-bit physical memory
addresses and 32-bit virtual memory addresses. Pages
are of size 8kB (213 bytes) and page table entries are 4
bytes each.

l If the system uses single level page tables, how much
memory is used by the page table for a process?

l If the system uses two-level page tables, how much
memory is used by the page tables for a process using
1GB (230 bytes)?

29

C
S

S
E

2
3
1
0

7
2
3
1

Exercise

You have 2 minutes

l Consider a system with 36-bit physical memory
addresses and 32-bit virtual memory addresses. Pages
are of size 8kB (213 bytes) and page table entries are 4
bytes each.

l …

30

C
S

S
E

2
3
1
0

7
2
3
1

Other Issues

l Hashed page tables
l Inverted page tables
l Segmentation
l Ideal size of pages

l Not topics for this course

31

C
S

S
E

2
3
1
0

7
2
3
1

32

C
S

S
E

2
3
1
0

7
2
3
1

User-space Memory
management

33

C
S

S
E

2
3
1
0

7
2
3
1

Typical Process Memory
Usage

0

kernel virtual memory

Memory mapped region
for shared libraries

runtime heap (via malloc)

program text (.text)
initialized data (.data)
uninitialized data (.bss)

stack

forbidden

 stack ptr

memory invisible to
user code – common
to all processes

the “brk” ptr

Process
memory
image
(UNIX / Linux)

In

cr
ea

si
n

g

vi
rt

u
al

 a
d

d
re

ss
es

34

C
S

S
E

2
3
1
0

7
2
3
1

User-space vs Kernel

l The operating system controls the
address ranges (pages) a process can
use. It does not decide how that space
is used.

l Management of those pages is the
responsibility of the process.

n Usually via standard libraries.

35

C
S

S
E

2
3
1
0

7
2
3
1

User-space vs Kernel

l The operating system controls the
address ranges (pages) a process can
use. It does not decide how that space
is used.

l Management of those pages is the
responsibility of the process.

n Usually via standard libraries.

36

C
S

S
E

2
3
1
0

7
2
3
1

Dynamic Memory
Allocation

l Explicit vs. Implicit Memory Allocator
n Explicit: application allocates and frees space

l E.g., malloc and free in C
n Implicit: application allocates, but does not free space

l E.g. garbage collection in functional languages, scripting
languages, and modern object oriented languages: Lisp,
Java, Perl, Mathematica, …

l Allocation
n In both cases the memory allocator provides an

abstraction of memory as a set of blocks
n Doles out free memory blocks to application

Application

Dynamic Memory Allocator

Heap Memory

37

C
S

S
E

2
3
1
0

7
2
3
1

Where Does malloc() get its
Memory?

l System calls
n brk()
n sbrk()

l See manual pages on moss
l See also end (section 3c)

l free() doesn’t necessarily return
memory to the operating system – may
just keep track of it for future use by
the application

38

C
S

S
E

2
3
1
0

7
2
3
1

Trashing the heap

l Allocators may record audit information near the
allocated memory. (For example the size of the
allocation)

l Now consider a[4]=20; free(b);

20 12 820

a b c

20 20 ? 820

a cFree

39

C
S

S
E

2
3
1
0

7
2
3
1

Trashing the heap

l Now c[0] is in free space (as is the size of c).
l If this space is allocated to something else, free(c) could

get very interesting.

20 20 820

a b c

Free

40

C
S

S
E

2
3
1
0

7
2
3
1

Memory-Related Bugs

l Dereferencing bad pointers
l Reading uninitialized memory
l Overwriting memory
l Referencing nonexistent variables
l Freeing blocks multiple times
l Referencing freed blocks
l Failing to free blocks

41

C
S

S
E

2
3
1
0

7
2
3
1

Dereferencing Bad
Pointers

l The classic scanf bug

scanf(“%d”, val);

42

C
S

S
E

2
3
1
0

7
2
3
1

Reading Uninitialized
Memory

l Assuming that heap data is initialized to
zero

/* return y = Ax */
int *matvec(int **A, int *x) {
 int *y = malloc(N*sizeof(int));
 int i, j;

 for (i=0; i<N; i++) {
 for (j=0; j<N; j++) {
 y[i] += A[i][j]*x[j];
 }
 }
 return y;
}

43

C
S

S
E

2
3
1
0

7
2
3
1

Overwriting Memory

l Allocating the (possibly) wrong sized
object

int **p;

p = malloc(N*sizeof(int));

for (i=0; i<N; i++) {
 p[i] = malloc(M*sizeof(int));
}

44

C
S

S
E

2
3
1
0

7
2
3
1

Overwriting Memory

l Off-by-one error

int **p;

p = malloc(N*sizeof(int));

for (i=0; i<=N; i++) {
 p[i] = malloc(M*sizeof(int));
}

45

C
S

S
E

2
3
1
0

7
2
3
1

Overwriting Memory

l Not checking max string size

l Basis for classic buffer overflow attacks.

char s[8];

get(s); // enter 1234567890

46

C
S

S
E

2
3
1
0

7
2
3
1

Overwriting Memory

l Referencing a pointer instead of the
object it points to

void swap(int* a, int* b) {
 int c=a;
 a=b;
 c=c;
}

47

C
S

S
E

2
3
1
0

7
2
3
1

Overwriting Memory

l Misunderstanding pointer arithmetic

int* search(int* p, int val) {
 while (*p && *p!=val) {
 p+=sizeof(int);
 }
 return p;
}

48

C
S

S
E

2
3
1
0

7
2
3
1

Referencing Nonexistent
Variables

l Forgetting that local variables
disappear when a function returns

int *foo () {
 int val;
 return &val;
}

49

C
S

S
E

2
3
1
0

7
2
3
1

Freeing Blocks Multiple
Times

l Nasty!

x = malloc(N*sizeof(int));
<manipulate x>
free(x);

y = malloc(M*sizeof(int));
<manipulate y>
free(x);

50

C
S

S
E

2
3
1
0

7
2
3
1

Referencing Freed Blocks

l Evil!
x = malloc(N*sizeof(int));
<manipulate x>
free(x);
...
y = malloc(M*sizeof(int));
for (i=0; i<M; i++) {
 y[i] = x[i]++;
}

51

C
S

S
E

2
3
1
0

7
2
3
1

Failing to Free Blocks
(Memory Leaks)

l Slow, long-term killer!

foo() {
 int *x = malloc(N*sizeof(int));
 ...
 return;
}

52

C
S

S
E

2
3
1
0

7
2
3
1

Failing to Free Blocks
(Memory Leaks)

l Freeing only part of a data structure

struct list {
 int val;
 struct list* next;
};

void foo() {
 struct list* head=
 malloc(sizeof(struct list));
 head->val=0;
 head->next=0;
 <create and use the rest of the list>
 …
 free(head);
}

53

C
S

S
E

2
3
1
0

7
2
3
1

Dealing With Memory
Bugs

l Conventional debugger (gdb)
n Good for finding bad pointer dereferences
n Hard to detect the other memory bugs

l Debugging malloc (CSRI UToronto malloc)
n Wrapper around conventional malloc
n Detects memory bugs at malloc and free boundaries

l Memory overwrites that corrupt heap structures
l Some instances of freeing blocks multiple times
l Memory leaks

n Cannot detect all memory bugs
l Overwrites into the middle of allocated blocks
l Freeing block twice that has been reallocated in the interim
l Referencing freed blocks

54

C
S

S
E

2
3
1
0

7
2
3
1

Dealing With Memory
Bugs (cont.)

l Check while executing:
n valgrind (linux)
n bcheck (agave)

l Garbage collection (Boehm-Weiser
Conservative GC)

n Let the system free blocks instead of the
programmer

55

C
S

S
E

2
3
1
0

7
2
3
1

Memory Matters!

l Memory is not unbounded
n It must be allocated and managed

l malloc(), free() etc
n Many applications are memory dominated

l Especially those based on complex, graph algorithms
l Memory referencing bugs especially pernicious

n Effects are distant in both time and space
l Memory performance is not uniform

n Cache and virtual memory effects can greatly affect
program performance

n Adapting program to characteristics of memory system
can lead to major speed improvements

