
School of Information Technology and Electrical Engineering
The University of Queensland

C
S

S
E

2
3
1
0

7
2
3
1

C
om

pu
te

r
S

ys
te

m
s

P
rin

ci
pl

es
 +

P

ro
gr

am
m

in
g

Week 4.1

Shells and scripts

C
S

S
E

2
3
1
0

7
2
3
1

2

This Week

Lectures
– Unix shell
– Shell scripts

Pracs
– Assignment 1 (Due this Friday)

C
S

S
E

2
3
1
0

7
2
3
1

3

Outline (shells)

UNIX Shell + Shell Scripts
– Based on Glass & Ables – mostly chapter 4 but

also 5 and 8

C
S

S
E

2
3
1
0

7
2
3
1

4

What is a Shell?

Interface between the user and the operating
system
Provides

– Input/output redirection, pipes
– Wildcards
– Job/process management (e.g. background jobs)
– Command history
– Command line editing
– Some built in commands/functions
– Scripting functionality
– … plus more

C
S

S
E

2
3
1
0

7
2
3
1

5

What Shells are There?

Many
– Thompson Shell (sh) – the original UNIX shell
– Bourne Shell (sh) – from UNIX v7 (1977)
– Bourne-Again shell (bash) – superset of sh

• What you’re probably using on moss

– Korn Shell (ksh)
– Z shell (zsh)
– C shell (csh)
– TENEX C shell (tcsh)
– Scheme shell (scsh)
– …

C
S

S
E

2
3
1
0

7
2
3
1

6

What Does a Shell do?

 When invoked (e.g. by login process or
manually)

1. Reads startup file(s) and initialises
2. Displays a prompt and waits for a user

command
3. If user indicates end-of-input (often Ctrl-D),

shell terminates, otherwise executes user
command and returns to step 2

 Shell scripts are similar, except
commands come from a text file

C
S

S
E

2
3
1
0

7
2
3
1

7

Executable Programs vs Built-in
Commands

Commands can be either
– Shell built-in commands (i.e. shell does

something, no external process started), or
– Separate executables (i.e. shell starts up an

external process)

All shells have this concept but the built-
in commands available in each shell
differ

C
S

S
E

2
3
1
0

7
2
3
1

8

Command Examples

– ls, sort, vim, pico, gcc, indent, which (external)
– cd, alias, type (builtin)
– echo, pwd, printf (either)

Bash built-in command type will tell you which
type of command
Bash built-in command help will list the built-in
commands (and can be used to get help on
them)
Built-ins executed in preference to external
commands unless

– disable built-in, or
– give full path to external command

C
S

S
E

2
3
1
0

7
2
3
1

9

Variables

Shell has two kinds of variables
– Local (or shell) variables

• Used only by the shell

– Environment variables
• Values passed to child processes

Variables are strings

Values accessed using $varname notation
– e.g. echo $HOME $USER $SHELL

C
S

S
E

2
3
1
0

7
2
3
1

10

Predefined Environment
Variables

Include:

HOME – full pathname of home directory

PATH – colon separated list of pathnames
to search for commands

USER – your username

SHELL – full pathname of your login shell

C
S

S
E

2
3
1
0

7
2
3
1

11

Defining a Variable

variableName=value
No spaces around the equals sign
Can change a shell variable to an environment
variable using built-in command export , e.g.

courseCode=CSSE2310
export courseCode

Example to be given in class
No need to declare variables before use
Different shells use different syntaxes for
defining variables (above is for Bourne, Bash)

C
S

S
E

2
3
1
0

7
2
3
1

12

Metacharacters

Some characters mean special things to
the shell

When you type a command, these
metacharacters are processed before
the command is executed

If you don’t want the special treatment,
use backslash before the character or
quote appropriately (discussed later)

C
S

S
E

2
3
1
0

7
2
3
1

13

Metacharacters (cont.)

Wildcards (for filename matching)
– * = zero or more characters
– ? = any single character

Comment
– # = start of comment (goes till end of line)

Running commands
– & = run command in background
– ; = used to separate commands
– `command` = substitute result of running command

Variable substitution
– $varname = substitute value of variable

C
S

S
E

2
3
1
0

7
2
3
1

14

Metacharacters (cont.)

Subshell
– (… commands …) = execute commands in a

sub-shell

Conditional sequences
– || = execute command if previous command

failed
– && = execute command if previous one

succeeded

Command “succeeds” if returns zero exit
status; “fails” if returns non-zero

C
S

S
E

2
3
1
0

7
2
3
1

15

Metacharacters (cont.)

Redirection & Pipes
– | = pipe, output of one program sent to the

input of the next
– > = send standard output to a file
– < = read standard input from a file
– >> = append standard output to a file

There are other metacharacters also (and
can vary by shell)

C
S

S
E

2
3
1
0

7
2
3
1

16

Examples

To be presented in class
– Wildcards (* ?)
– Redirection (< > >>)

• /dev/null

– Pipes (|)
– Command sequences (; || &&)
– Subshell (())
– Command substitution (`)
– Background processing (&)

C
S

S
E

2
3
1
0

7
2
3
1

17

Shell Scripts

Shell script = series of commands in a regular
text file
Can be made executable and executed like a
regular command:

chmod +x script-file-name
./script-file-name (if it’s in current directory)

How does the system know which shell to use? –
depends on first line of the shell script

– # - use the current shell
– #!pathName – use the shell with the specified path

• e.g. #!/opt/local/bin/bash
– anything else, use the Bourne Shell (/bin/sh)

C
S

S
E

2
3
1
0

7
2
3
1

18

Built-in Shell Variables

All shells support:
$$ - process ID of the shell
$0 – name of the shell script (if applicable)
$1 … $9 – command line arguments (if
applicable)
$* – all the command line arguments
Bourne shell/Bash support (amongst others):
$# - number of command line arguments

– excludes command name

$? – exit status of last command
$! – process ID of last background command

C
S

S
E

2
3
1
0

7
2
3
1

19

Quoting

Sometimes want to stop the shell
replacing metacharacters

Single quotes – inhibit wildcard
replacement, variable substitution,
command substitution

Double quotes – inhibit wildcard
replacement only

Can also use backslashes

Examples in class…

C
S

S
E

2
3
1
0

7
2
3
1

20

Startup Files

Files read at startup vary
– by shell (different shells use different files)
– by mode

• login shell
• interactive shell
• non-interactive (shell script)

Files contain commands which are executed (or sourced)
– Not a separate process – commands are executed within

the current shell – just like you’d typed them in
– To source a file within Bash, use either:

• . filename
• source file

C
S

S
E

2
3
1
0

7
2
3
1

21

Bash Startup

Login Shell
– /etc/profile (system wide settings)
– ~/.bash_profile OR ~/.bash_login OR ~/.profile
– (~/.bash_logout executed on exit)

Interactive Shell
– ~/.bashrc

Shell Script
– Looks for file named in BASH_ENV environment variable

C
S

S
E

2
3
1
0

7
2
3
1

22

Other features

● Arithmetic:
● Use bash's let command or expr (see man

pages)

●Conditional expressions:
● Use bash's [] or test command.

C
S

S
E

2
3
1
0

7
2
3
1

23

Control Structures

for name [in word…]
do
 commands…
done

variable name is assigned each of the the
words in turn

If words omitted, uses script arguments
$1 $2 …

Examples…

Means this part
is optional

C
S

S
E

2
3
1
0

7
2
3
1

24

Control Structures

for name [in word…]
do
 commands…
done

variable name is assigned each of the the
words in turn

If words omitted, uses script arguments
$1 $2 …

Examples…

Means this part
is optional

C
S

S
E

2
3
1
0

7
2
3
1

25

Control Structures (cont)

if commands1…
then
 commands2…
elif commands3…
then
 commands4…
else
 commands5…
fi

elif and else branches are optional
– Can have multiple elif branches

If last command in commands1… succeeds (exit status 0) then
commands2… executed, etc

Example (commands are often test expressions)

C
S

S
E

2
3
1
0

7
2
3
1

26

Control Structures (cont)

while commands1…
do
 commands2…
done

commands1… commands executed and if
last command has exit status 0, then
commands2… executed – repeat until
commands1… return non-zero exit status

Example …

C
S

S
E

2
3
1
0

7
2
3
1

27

Other Control Structures

case…

until … do… done

trap

