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% This Week
N
O ————
Lectures
— Unix shell
— Shell scripts
Pracs

— Assignment 1 (Due this Friday)

Programming
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Outline (shells)
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UNIX Shell + Shell Scripts

— Based on Glass & Ables - mostly chapter 4 but
also5 and 8
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What is a Shell?

P
Interface between the user and the operating
system
Provides

— Input/output redirection, pipes

— Wildcards

— Job/process management (e.g. background jobs)

— Command history

— Command line editing

— Some built in commands/functions

— Scripting functionality

— ... plus more

CSSE
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What Shells are There?
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Many
— Thompson Shell (sh) - the original UNIX shell
— Bourne Shell (sh) - from UNIX v7 (1977)

— Bourne-Again shell (bash) - superset of sh
« What you’re probably using on moss

— Korn Shell (ksh)

— Z shell (zsh)

— C shell (csh)

— TENEX C shell (tcsh)
— Scheme shell (scsh)
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What Does a Shell do?

-
® When invoked (e.g. by login process or
manually)
1. Reads startup file(s) and initialises

2. Displays a prompt and waits for a user
command

3. If user indicates end-of-input (often Ctrl-D),
shell terminates, otherwise executes user
command and returns to step 2

W Shell scripts are similar, except

commands come from a text file

CSSE
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Executable Programs vs Built-in
Commands

Commands can be either

— Shell built-in commands (i.e. shell does
something, no external process started), or

— Separate executables (i.e. shell starts up an
external process)

All shells have this concept but the built-
In commands available in each shell
differ

Command Examples

I
— |s, sort, vim, pico, gcc, indent, which (external)
— cd, alias, type (builtin)
— echo, pwd, printf (either)
Bash built-in command type will tell you which
type of command
Bash built-in command help will list the built-in
commands (and can be used to get help on
them)
Built-ins executed in preference to external
commands unless
— disable built-in, or
— give full path to external command
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Variables
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Shell has two kinds of variables

— Local (or shell) variables
* Used only by the shell

— Environment variables
* Values passed to child processes

Variables are strings

Values accessed using $varname notation
~ e.g. echo $HOME $USER $SHELL
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Predefined Environment
Variables
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Include:
HOME - full pathname of home directory

PATH - colon separated list of pathnames
to search for commands

USER - your username
SHELL - full pathname of your login shell
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Defining a Variable

S N ——
variableName=value

No spaces around the equals sign

Can change a shell variable to an environment
variable using built-in command export , e.qg.

courseCode=CSSE2310
export courseCode

Example to be given in class
No need to declare variables before use

Different shells use different syntaxes for
defining variables (above is for Bourne, Bash)
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Metacharacters

Some characters mean special things to
the shell

When you type a command, these
metacharacters are processed before
the command is executed

If you don’t want the special treatment,
use backslash before the character or
quote appropriately (discussed later)
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Metacharacters (cont.)

Wildcards (for filename matching)
— * = zero or more characters
— ? = any single character

Comment
— # = start of comment (goes till end of line)

Running commands
— & = run command in background
— ; = used to separate commands
— “command” = substitute result of running command

Variable substitution
— $varname = substitute value of variable
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Metacharacters (cont.)

e
Subshell

— ( .. commands ..) = execute commands in a
sub-shell
Conditional sequences

— | | = execute command if previous command
failed

— && = execute command if previous one
succeeded

Command “succeeds” if returns zero exit
status: “fails” if returns non-zero
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Metacharacters (cont.)
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Redirection & Pipes

— | = pipe, output of one program sent to the
input of the next

— > = send standard output to a file
— < = read standard input from a file
— >> = append standard output to a file

There are other metacharacters also (and
can vary by shell)
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Examples
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To be presented in class
— Wildcards (* 7?)

— Redirection (< > >>)
 /dev/null

— Pipes (])

— Command sequences (; || &&)
— Subshell ( () )

— Command substitution ()

— Background processing (&)
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Shell Scripts

S
Shell script = series of commands in a regular
text file

Can be made executable and executed like a
regular command:

chmod +x script-file-name

./script-file-name (if it’s in current directory)

How does the system know which shell to use? -
depends on first line of the shell script
— # - use the current shell

— #!pathName - use the shell with the specified path
* e.qg. #!/opt/local/bin/bash

— anything else, use the Bourne Shell (/bin/sh)

CSSE
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Built-in Shell Variables

B ———
All shells support:

$$ - process ID of the shell
$0 - name of the shell script (if applicable)

$1 ... $9 - command line arguments (if
applicable)

$* - all the command line arguments
Bourne shell/Bash support (amongst others):
$# - number of command line arguments

— excludes command name
$? - exit status of last command

$! - process ID of last background command
18
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Sometimes want to stop the shell
replacing metacharacters

Single quotes - inhibit wildcard
replacement, variable substitution,
command substitution

Double quotes - inhibit wildcard
replacement only

Can also use backslashes

Examples in class...
19
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Startup Files
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Files read at startup vary
— by shell (different shells use different files)
— by mode
* login shell
* interactive shell
* non-interactive (shell script)
Files contain commands which are executed (or sourced)

— Not a separate process - commands are executed within
the current shell - just like you’'d typed them in

— To source a file within Bash, use either:
+ . filename
* source file

20
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Bash Startup

- < e
Login Shell

— /etc/profile (system wide settings)

— ~/.bash_profile OR ~/.bash_login OR ~/.profile

— (~/.bash_logout executed on exit)
Interactive Shell

— ~/.bashrc

Shell Script
— Looks for file named in BASH_ENV environment variable

CSSE
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Other features
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 Arithmetic:

* Use bash's let command or expr (see man
pages)

*Conditional expressions:

 Use bash's[ ] or test command.
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Control Structures

for name [ in word.. ]
do
Means this part

commands... is optional
done

variable name is assigned each of the the
words in turn

If words omitted, uses script arguments
$1 $2 ...

Examples...
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Control Structures

for name [ in word.. ]
do
Means this part

commands... is optional
done

variable name is assigned each of the the
words in turn

If words omitted, uses script arguments
$1 $2 ...

Examples...
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Control Structures (cont)

if commandsi..
then
commands?2...
elif commandss3..
then
commandsd4...
else
commands>s...
fi
elif and else branches are optional
— Can have multiple elif branches

If last command in commands1.. succeeds (exit status 0) then
commands?2... executed, etc

Example (commands are often test expressions)
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Control Structures (cont)

while commands1...
do

commands?2...
done

commandsi.. commands executed and if
last command has exit status 0, then
commands2... executed - repeat until
commandsl1... return non-zero exit status

Example ...
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Other Control Structures
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case...
until ... do... done

trap

27



