2310
7231
Computer
Systems
Principles +

CSSE

Week 4.1

Shells and scripts

School of Information Technology and Electrical Engineering
The University of Queensland

2310
7231

% This Week
N
O ————
Lectures
— Unix shell
— Shell scripts
Pracs

— Assignment 1 (Due this Friday)

Programming

2310
7231

Outline (shells)

CSSE

UNIX Shell + Shell Scripts

— Based on Glass & Ables - mostly chapter 4 but
also5 and 8

2310
7231

What is a Shell?

P
Interface between the user and the operating
system
Provides

— Input/output redirection, pipes

— Wildcards

— Job/process management (e.g. background jobs)

— Command history

— Command line editing

— Some built in commands/functions

— Scripting functionality

— ... plus more

CSSE

2310
7231

What Shells are There?

CSSE

Many
— Thompson Shell (sh) - the original UNIX shell
— Bourne Shell (sh) - from UNIX v7 (1977)

— Bourne-Again shell (bash) - superset of sh
« What you’re probably using on moss

— Korn Shell (ksh)

— Z shell (zsh)

— C shell (csh)

— TENEX C shell (tcsh)
— Scheme shell (scsh)

2310
7231

What Does a Shell do?

-
® When invoked (e.g. by login process or
manually)
1. Reads startup file(s) and initialises

2. Displays a prompt and waits for a user
command

3. If user indicates end-of-input (often Ctrl-D),
shell terminates, otherwise executes user
command and returns to step 2

W Shell scripts are similar, except

commands come from a text file

CSSE

2310
7231

CSSE

2310
7231

CSSE

Executable Programs vs Built-in
Commands

Commands can be either

— Shell built-in commands (i.e. shell does
something, no external process started), or

— Separate executables (i.e. shell starts up an
external process)

All shells have this concept but the built-
In commands available in each shell
differ

Command Examples

I
— |s, sort, vim, pico, gcc, indent, which (external)
— cd, alias, type (builtin)
— echo, pwd, printf (either)
Bash built-in command type will tell you which
type of command
Bash built-in command help will list the built-in
commands (and can be used to get help on
them)
Built-ins executed in preference to external
commands unless
— disable built-in, or
— give full path to external command

2310
7231

Variables

CSSE

Shell has two kinds of variables

— Local (or shell) variables
* Used only by the shell

— Environment variables
* Values passed to child processes

Variables are strings

Values accessed using $varname notation
~ e.g. echo $HOME $USER $SHELL

2310
7231

Predefined Environment
Variables

CSSE

Include:
HOME - full pathname of home directory

PATH - colon separated list of pathnames
to search for commands

USER - your username
SHELL - full pathname of your login shell

10

2310
7231

CSSE

2310
7231

CSSE

Defining a Variable

S N ——
variableName=value

No spaces around the equals sign

Can change a shell variable to an environment
variable using built-in command export , e.qg.

courseCode=CSSE2310
export courseCode

Example to be given in class
No need to declare variables before use

Different shells use different syntaxes for
defining variables (above is for Bourne, Bash)

11

Metacharacters

Some characters mean special things to
the shell

When you type a command, these
metacharacters are processed before
the command is executed

If you don’t want the special treatment,
use backslash before the character or
quote appropriately (discussed later)

12

2310
7231

CSSE

2310

CSSE

7231

Metacharacters (cont.)

Wildcards (for filename matching)
— * = zero or more characters
— ? = any single character

Comment
— # = start of comment (goes till end of line)

Running commands
— & = run command in background
— ; = used to separate commands
— “command” = substitute result of running command

Variable substitution
— $varname = substitute value of variable

13

Metacharacters (cont.)

e
Subshell

— (.. commands ..) = execute commands in a
sub-shell
Conditional sequences

— | | = execute command if previous command
failed

— && = execute command if previous one
succeeded

Command “succeeds” if returns zero exit
status: “fails” if returns non-zero

14

2310
7231

Metacharacters (cont.)

CSSE

Redirection & Pipes

— | = pipe, output of one program sent to the
input of the next

— > = send standard output to a file
— < = read standard input from a file
— >> = append standard output to a file

There are other metacharacters also (and
can vary by shell)

15

2310
7231

Examples

CSSE

To be presented in class
— Wildcards (* 7?)

— Redirection (< > >>)
 /dev/null

— Pipes (])

— Command sequences (; || &&)
— Subshell (())

— Command substitution ()

— Background processing (&)

16

2310
7231

Shell Scripts

S
Shell script = series of commands in a regular
text file

Can be made executable and executed like a
regular command:

chmod +x script-file-name

./script-file-name (if it’s in current directory)

How does the system know which shell to use? -
depends on first line of the shell script
— # - use the current shell

— #!pathName - use the shell with the specified path
* e.qg. #!/opt/local/bin/bash

— anything else, use the Bourne Shell (/bin/sh)

CSSE

17

2310
7231

Built-in Shell Variables

B ———
All shells support:

$$ - process ID of the shell
$0 - name of the shell script (if applicable)

$1 ... $9 - command line arguments (if
applicable)

$* - all the command line arguments
Bourne shell/Bash support (amongst others):
$# - number of command line arguments

— excludes command name
$? - exit status of last command

$! - process ID of last background command
18

CSSE

2310
7231

Quoting

CSSE

Sometimes want to stop the shell
replacing metacharacters

Single quotes - inhibit wildcard
replacement, variable substitution,
command substitution

Double quotes - inhibit wildcard
replacement only

Can also use backslashes

Examples in class...
19

2310
7231

Startup Files

CSSE

Files read at startup vary
— by shell (different shells use different files)
— by mode
* login shell
* interactive shell
* non-interactive (shell script)
Files contain commands which are executed (or sourced)

— Not a separate process - commands are executed within
the current shell - just like you’'d typed them in

— To source a file within Bash, use either:
+ . filename
* source file

20

2310
7231

Bash Startup

- < e
Login Shell

— /etc/profile (system wide settings)

— ~/.bash_profile OR ~/.bash_login OR ~/.profile

— (~/.bash_logout executed on exit)
Interactive Shell

— ~/.bashrc

Shell Script
— Looks for file named in BASH_ENV environment variable

CSSE

21

2310
7231

Other features

CSSE

 Arithmetic:

* Use bash's let command or expr (see man
pages)

*Conditional expressions:

 Use bash's[] or test command.

22

2310

CSSE

2310
7231

CSSE

7231

Control Structures

for name [in word..]
do
Means this part

commands... is optional
done

variable name is assigned each of the the
words in turn

If words omitted, uses script arguments
$1 $2 ...

Examples...

23

Control Structures

for name [in word..]
do
Means this part

commands... is optional
done

variable name is assigned each of the the
words in turn

If words omitted, uses script arguments
$1 $2 ...

Examples...

24

2310
7231

CSSE

2310
7231

CSSE

Control Structures (cont)

if commandsi..
then
commands?2...
elif commandss3..
then
commandsd4...
else
commands>s...
fi
elif and else branches are optional
— Can have multiple elif branches

If last command in commands1.. succeeds (exit status 0) then
commands?2... executed, etc

Example (commands are often test expressions)

25

Control Structures (cont)

while commands1...
do

commands?2...
done

commandsi.. commands executed and if
last command has exit status 0, then
commands2... executed - repeat until
commandsl1... return non-zero exit status

Example ...

26

2310
7231

Other Control Structures

CSSE

case...
until ... do... done

trap

27

