2310

7231
Computer
Systems
Principles +

CSSE

Week 3.1

Introduction to Operating Systems

School of Information Technology and Electrical Engineering
The University of Queensland

2310
7231

What is an Operating

sttem?

* Write down what you think an operating
system does.

CSSE

* [Discussion to take place in class]

2310
7231

CSSE

Programming
CSSE

2310
7231

2310
7231

CSSE

2310
7231

CSSE

Lecture Outline

What is an operating system?
Different views of operating systems
History of operating systems
Example operating systems
Hardware support

OS organisation

Slide Credits
* E.N. EInozahy, U Texas
R. Chandra, Cornell University

Break



2310
7231

The 5 Views of OS

CSSE

* Your view of an OS depends on who you
are:
= The hardware view
= The operating system designer’s view
= The application programmer’s view
* The end-user’s view
= The system administrator’s view

2310
7231

The OS Designer’s View

CSSE

* The interest revolves mainly about the
OS itself, its internal structure, its
efficiency, performance, data
structures, eftc..
= How can we make the OS more efficient
= How can we add more functionality?
= How do we debug the OS? Make it more

reliable, scalable, etc..

2310
7231

The End-User’s View

CSSE

* The OS is just a program that happens to be
pre-installed
= Must not crash or externalize the ugly aspects of
the machine
= Must protect investment in existing software &
applications
= Users care about applications, not the OS
= A good OS is the one that is most transparent

* Contrast Windows, MacOS & UNIX

2310
7231

The Hardware View

e
* The operating system is the layer of
software that interacts directly with the
hardware, concerns revolve around:
* The boot process
= Devices and how the OS can use them
* The interactions between H/W and OS

CSSE

2310
7231

The Application

____Programmer’sView

* The OS is like a library with a well defined set

of API's

= What abstractions are available from the 0S?

* How well is the API structured? Not too low-
level, or high-level.

* How portable is the interface?

= Protection of the intellectual investment--
don’'t want to keep rewriting the same

program for each new OS release.
® Explains why Windows has been so successful!

CSSE

10

2310
7231

The System Administrator

. Mew

* An OS is a program that allows the efficient
and equitable usage of resources:
* How can it track usage for accounting?
* How easy is it to install new software?
= Security
= Fairness

CSSE

* Contrast Windows, MacOS, UNIX, and
mainframe systems



2310
7231

CSSE

2310
7231

CSSE

* Timesharing (1970s) allows interactive

2310
7231

CSSE

History of Operating

Earliest computers had no OS
= programmed directly
Initially, OS was just a run-time library

= You linked your application with the OS,
loaded the whole program into memory, and ran it

* How do you get it into the computer? Through the
control panel!

Simple batch systems (mid 1950s - mid 1960s)

* Permanently resident OS in primary memory

* Loaded a single job from card reader, ran it, loaded next
job...

= Control cards in the input file told the OS what to do

* Spooling allowed jobs to be read in advance onto
tape/disk 13

Time Sharing Systems

computer use

= Users connect to a central machine through a
terminal

= User feels as if they have the entire machine

= Based on time-slicing: divides CPU equally among the
users

= Allows active viewing, editing, debugging, executing
process

= Security mechanisms needed to isolate users

= Requires memory protection hardware for isolation

= Optimizes for response time at the cost of throughput

15

Distributed Operating

. Systems

* Cluster of individual machines
= Over a LAN or WAN or fast interconnect
= No shared memory or clock
* Asymmetric vs. symmetric clustering
* Sharing of distributed resources, hardware
and software
= Resource utilization, high availability
* Permits some parallelism, but speedup is not
the issue
* SANs, Oracle Parallel Server
17

2310
7231

Multiprogramming

CSSE

Multiprogramming systems increased utilization
= Developed in the 1960s
= Keeps multiple runnable jobs loaded in memory
= Overlaps I/0 processing of a job with computation of another
= Benefits from I/O devices that can operate asynchronously
= Requires the use of interrupts and DMA

= Optimizes for throughput at the cost of response time
= ~m—

14

2310
7231

Personal Operating

CSSE

PC OS’s, 1974+
= Apple ll, and others
* MSDOS 1980+
* The PC revolution
* Windowing OS 1983+
= Apple (MacOS) & Xerox (Pilot OS)
= Windows 3.1, 0S/2
° Computers are cheap [Jeveryone has a
computer
Initially, the OS was a library
* Advanced features were added back

= Multiprogramming, memory protection,
etc

2310
7231

Parallel Operating

. Systems

* Multiprocessor or tightly coupled
systems
* Many advantages:
* Increased throughput
* Cheaper
= More reliable
* Asymmetric vs. symmetric
multiprocessing
= Master/slave vs. peer relationships

CSSE

18



2310
7231

Real Time Operating

CSSE

* Goal: To cope with rigid time constraints
* Hard real-time
= OS guarantees that applications will meet their
deadlines
= Examples: TCAS, health monitors, factory control
° Soft real-time
= OS provides prioritization, on a best-effort basis
* No deadline guarantees, but bounded delays
= Examples: most electronic appliances
* Real-time means “predictable”
® NOT fast

-

2310
7231

CSSE

Short Break

P ———————
Stand up and stretch

2310
7231

Implementation

e

Using a bit in the processor (i.e. 0 or 1)

Operating system code runs in supervisor

mode, while user program code runs in user

mode

Switching from user to supervisor mode occurs

on:

* interrupts: hardware devices needing
service

= exceptions: user program acts silly (divide
by 0, bus error, etc)

= trap instructions: user program requires OS
service (system call)

Switching back occurs by an RTI instruction

23

CSSE

2310
7231

OS Types & Examples

CSSE

* Desktop: MSDOS, Windows 95/98/ME/NT/
2000/XP/Vista/7, MacOS, Linux
Workstation / Server: HPUX, AlX, Solaris,
Linux, BSD (many variants), Windows Server,
Novell Netware
Minicomputers: 05/400, VMS
Mainframes: CMS/MVS (now z/0S)
Embedded: 0S-9, VxWorks, Lynx, PalmQOS,
Windows CE, Symbian OS, uCLinux, 10S

= Some of these are real-time

20

2310
7231

Hardware Support

~ CSSE

Operating system needs to:
= control I/O devices
= control access to the hardware
all while denying these privileges to user programs:
= for protection
= for abstraction/ease of use
Hardware supports two modes of operation (or more):

= access to hardware & I/O devices is done through
privileged instructions, these are only available in
“supervisor” mode

= privileged instructions cannot be executed in “user”
mode

22

2310
7231

On Interrupts

~ CSSE

Hardware calls the operating system at a pre-specified
location

Operating system saves state of the user program
Operating system identifies the device and cause of
interrupt

Responds to the interrupt (possibly killing program,
<CTRL-C>)

Operating system restores state of the user program (if
applicable) or some other user program

Execute an RTI instruction to return to the user program
User program continues exactly at the same point it was
interrupted.

Key Fact: None of this is visible to the user program
24



2310

CSSE

2310

2310

7231

On Exceptions

* Hardware calls the operating system at a pre-specified
location

* Operating system identifies the cause of the exception
(e.g. divide by 0)

* If user program has exception handling specified, then

OS adjust the user program state so that it calls its

handler

Execute an RTI instruction to return to the user program

* If user program did not have a specified handler, then
OS kills it and runs some other user program, as
available

Key Fact: Effects of exceptions are visible to user
programs and cause abnormal execution flow

25

7231

Crossing Protection

CSSE

* User calls OS procedure for “privileged” operations

* Calling a kernel mode service from user mode program:
= Using System Calls
= System Calls switches execution to kernel mode

____Boundaries =

User Mode

Kernel Mode
Mode bit =0

Trap
Mode bit=0

Return (RTI)
Mode bit = 1

User process H System Call ‘ R
1

Save Caller’s state HExecute system callH Restore state

=T

7231

Reducing System Call

CSSE

* Problem: The user-kernel mode distinction
poses a performance barrier
= Crossing this hardware barrier is costly.
= System calls take 10x-1000x more time than a
procedure call
* Solution: Perform some system functionality
in user mode
= Libraries (DLLs) can reduce number of system
calls,
® by caching results (getpid) or
® pbuffering (open/read/write vs. fopen/fread/fwrite).

29

. Overhead =

2310
7231

CSSE

On System Calls

User program executes a trap instruction (system call)
Hardware calls the operating system at a pre-specified
location

Operating system identifies the required service and
parameters, e.g. open(filename, O_RDONLY);

Operating system executes the required service
Operating system sets a register to contain the result of
call

Execute an RTI instruction to return to the user program
User program receives the result and continues

Key Fact: To the user program, it appears as a

2310
7231

CSSE

2310
7231

CSSE

function call executed under program control

System Calls

Programming interface to services provided
by the OS

Typically written in a high-level language (C
or C++)

Mostly accessed by programs using APIs

Three common APIs:
= Win32 API for Windows

= POSIX API for POSIX-based systems (UNIX,
Linux, Mac OS X)
® This is the emphasis for COMP2303

= Java API for the Java virtual machine (JVM)
28

OS Structure

* An OS is just a program:

= It has a main() function, which gets called only once
(during boot)

= Like any program, it consumes resources (such as
memory), can do silly things (like generating an
exception), etc.

° But it is a very strange program:

= It is “entered” from different locations in response to
external events

= It does not have a single thread of control, it can be
invoked simultaneously by two different events (e.g. sys
call & an interrupt)

= It is not supposed to terminate

= It can execute any instruction in the machine 30



2310

7231
2310
7231

Booting the System Operating System in Action

CSSE
CSSE

-

CPU loads boot program from ROM (e.g. BIOS in PC’s) * After basic processes have started, the OS runs user
programs, if available, otherwise enters the idle loop

* Intheidle loop:
= OS executes an infinite loop (UNIX)
= OS performs some system management & profiling
= OS halts the processor and enter in low-power mode

* Boot program:

* Examines/checks machine configuration (number of
CPU’s, how much memory, number & type of hardware
devices, etc.)

* Builds a configuration structure describing the hardware

* Loads the operating system, and gives it the (notebooks) :
' . ! = OS computes some function (DEC’'s VMS on VAX
configuration structure computed pi)
* Operating system initialization: - 0S wakes up on:
= Initialize kernel data structures = interrupts from hardware devices
= Initialize the state of all hardware devices = traps from user programs
= Creates a number of processes to start operation (e.g. = exceptions from user programs

getty in UNIX, the Windowing system in Windows)
31 32



