
School of Information Technology and Electrical Engineering
The University of Queensland

C
S

S
E

2
3
1
0

7
2
3
1

C
om

pu
te

r
S

ys
te

m
s

P
rin

ci
pl

es
 +

P

ro
gr

am
m

in
g

Week 3.1

Introduction to Operating Systems

C
S

S
E

2
3
1
0

7
2
3
1

2

Lecture Outline

 What is an operating system?
 Different views of operating systems
 History of operating systems
 Example operating systems
 Hardware support
 OS organisation

 Slide Credits
 E.N. Elnozahy, U Texas
 R. Chandra, Cornell University

C
S

S
E

2
3
1
0

7
2
3
1

3

What is an Operating
System?

 Write down what you think an operating
system does.

 [Discussion to take place in class]

C
S

S
E

2
3
1
0

7
2
3
1

4

C
S

S
E

2
3
1
0

7
2
3
1

5

C
S

S
E

2
3
1
0

7
2
3
1

6

Break

C
S

S
E

2
3
1
0

7
2
3
1

7

The 5 Views of OS

 Your view of an OS depends on who you
are:
 The hardware view
 The operating system designer’s view
 The application programmer’s view
 The end-user’s view
 The system administrator’s view

C
S

S
E

2
3
1
0

7
2
3
1

8

The Hardware View

 The operating system is the layer of
software that interacts directly with the
hardware, concerns revolve around:
 The boot process
 Devices and how the OS can use them
 The interactions between H/W and OS

C
S

S
E

2
3
1
0

7
2
3
1

9

The OS Designer’s View

 The interest revolves mainly about the
OS itself, its internal structure, its
efficiency, performance, data
structures, etc..
 How can we make the OS more efficient
 How can we add more functionality?
 How do we debug the OS? Make it more

reliable, scalable, etc..

C
S

S
E

2
3
1
0

7
2
3
1

10

The Application
Programmer’s View

 The OS is like a library with a well defined set
of API’s
 What abstractions are available from the OS?
 How well is the API structured? Not too low-

level, or high-level.
 How portable is the interface?
 Protection of the intellectual investment--

don’t want to keep rewriting the same
program for each new OS release.
Explains why Windows has been so successful!

C
S

S
E

2
3
1
0

7
2
3
1

11

The End-User’s View

 The OS is just a program that happens to be
pre-installed
 Must not crash or externalize the ugly aspects of

the machine
 Must protect investment in existing software &

applications
 Users care about applications, not the OS
 A good OS is the one that is most transparent

 Contrast Windows, MacOS & UNIX

C
S

S
E

2
3
1
0

7
2
3
1

12

The System Administrator
View

 An OS is a program that allows the efficient
and equitable usage of resources:
 How can it track usage for accounting?
 How easy is it to install new software?
 Security
 Fairness

 Contrast Windows, MacOS, UNIX, and
mainframe systems

C
S

S
E

2
3
1
0

7
2
3
1

13

History of Operating
Systems

 Earliest computers had no OS
 programmed directly

 Initially, OS was just a run-time library
 You linked your application with the OS,

loaded the whole program into memory, and ran it
 How do you get it into the computer? Through the

control panel!
 Simple batch systems (mid 1950s – mid 1960s)

 Permanently resident OS in primary memory
 Loaded a single job from card reader, ran it, loaded next

job...
 Control cards in the input file told the OS what to do
 Spooling allowed jobs to be read in advance onto

tape/disk
C

S
S

E
2
3
1
0

7
2
3
1

1414

Multiprogramming
Systems

 Multiprogramming systems increased utilization
 Developed in the 1960s
 Keeps multiple runnable jobs loaded in memory
 Overlaps I/O processing of a job with computation of another
 Benefits from I/O devices that can operate asynchronously
 Requires the use of interrupts and DMA
 Optimizes for throughput at the cost of response time

C
S

S
E

2
3
1
0

7
2
3
1

15

Time Sharing Systems

 Timesharing (1970s) allows interactive
 computer use

 Users connect to a central machine through a
terminal

 User feels as if they have the entire machine
 Based on time-slicing: divides CPU equally among the

users
 Allows active viewing, editing, debugging, executing

process
 Security mechanisms needed to isolate users
 Requires memory protection hardware for isolation
 Optimizes for response time at the cost of throughput

C
S

S
E

2
3
1
0

7
2
3
1

1616

Personal Operating
Systems

 PC OS’s, 1974+
 Apple II, and others

 MSDOS 1980+
 The PC revolution

 Windowing OS 1983+
 Apple (MacOS) & Xerox (Pilot OS)
 Windows 3.1, OS/2

 Computers are cheap  everyone has a
computer

 Initially, the OS was a library
 Advanced features were added back

 Multiprogramming, memory protection,
etc

C
S

S
E

2
3
1
0

7
2
3
1

17

Distributed Operating
Systems

 Cluster of individual machines
 Over a LAN or WAN or fast interconnect
 No shared memory or clock

 Asymmetric vs. symmetric clustering
 Sharing of distributed resources, hardware

and software
 Resource utilization, high availability

 Permits some parallelism, but speedup is not
the issue

 SANs, Oracle Parallel Server

C
S

S
E

2
3
1
0

7
2
3
1

18

Parallel Operating
Systems

 Multiprocessor or tightly coupled
systems

 Many advantages:
 Increased throughput
 Cheaper
 More reliable

 Asymmetric vs. symmetric
multiprocessing
 Master/slave vs. peer relationships

C
S

S
E

2
3
1
0

7
2
3
1

1919

Real Time Operating
Systems

 Goal: To cope with rigid time constraints
 Hard real-time

 OS guarantees that applications will meet their
deadlines

 Examples: TCAS, health monitors, factory control
 Soft real-time

 OS provides prioritization, on a best-effort basis
 No deadline guarantees, but bounded delays
 Examples: most electronic appliances

 Real-time means “predictable”
 NOT fast

C
S

S
E

2
3
1
0

7
2
3
1

20

OS Types & Examples

 Desktop: MSDOS, Windows 95/98/ME/NT/
2000/XP/Vista/7, MacOS, Linux

 Workstation / Server: HPUX, AIX, Solaris,
Linux, BSD (many variants), Windows Server,
Novell Netware

 Minicomputers: OS/400, VMS
 Mainframes: CMS/MVS (now z/OS)
 Embedded: OS-9, VxWorks, Lynx, PalmOS,

Windows CE, Symbian OS, uCLinux, IOS
 Some of these are real-time

C
S

S
E

2
3
1
0

7
2
3
1

Short Break

Stand up and stretch

C
S

S
E

2
3
1
0

7
2
3
1

22

Hardware Support

 Operating system needs to:
 control I/O devices
 control access to the hardware

all while denying these privileges to user programs:
 for protection
 for abstraction/ease of use

 Hardware supports two modes of operation (or more):
 access to hardware & I/O devices is done through

privileged instructions, these are only available in
“supervisor” mode

 privileged instructions cannot be executed in “user”
mode

C
S

S
E

2
3
1
0

7
2
3
1

23

Implementation

 Using a bit in the processor (i.e. 0 or 1)
 Operating system code runs in supervisor

mode, while user program code runs in user
mode

 Switching from user to supervisor mode occurs
on:
 interrupts: hardware devices needing

service
 exceptions: user program acts silly (divide

by 0, bus error, etc)
 trap instructions: user program requires OS

service (system call)
 Switching back occurs by an RTI instruction

C
S

S
E

2
3
1
0

7
2
3
1

24

On Interrupts

 Hardware calls the operating system at a pre-specified
location

 Operating system saves state of the user program
 Operating system identifies the device and cause of

interrupt
 Responds to the interrupt (possibly killing program,

<CTRL-C>)
 Operating system restores state of the user program (if

applicable) or some other user program
 Execute an RTI instruction to return to the user program
 User program continues exactly at the same point it was

interrupted.

Key Fact: None of this is visible to the user program

C
S

S
E

2
3
1
0

7
2
3
1

25

On Exceptions

 Hardware calls the operating system at a pre-specified
location

 Operating system identifies the cause of the exception
(e.g. divide by 0)

 If user program has exception handling specified, then
OS adjust the user program state so that it calls its
handler

 Execute an RTI instruction to return to the user program
 If user program did not have a specified handler, then

OS kills it and runs some other user program, as
available

Key Fact: Effects of exceptions are visible to user
programs and cause abnormal execution flow

C
S

S
E

2
3
1
0

7
2
3
1

26

On System Calls

 User program executes a trap instruction (system call)
 Hardware calls the operating system at a pre-specified

location
 Operating system identifies the required service and

parameters, e.g. open(filename, O_RDONLY);
 Operating system executes the required service
 Operating system sets a register to contain the result of

call
 Execute an RTI instruction to return to the user program
 User program receives the result and continues

Key Fact: To the user program, it appears as a
function call executed under program control

C
S

S
E

2
3
1
0

7
2
3
1

27

Crossing Protection
Boundaries

 User calls OS procedure for “privileged” operations
 Calling a kernel mode service from user mode program:

 Using System Calls
 System Calls switches execution to kernel mode

User process System Call

Trap
Mode bit = 0

Save Caller’s state Execute system call Restore state

Return (RTI)
Mode bit = 1

Resume process

User Mode
Mode bit = 1

Kernel Mode
Mode bit = 0

C
S

S
E

2
3
1
0

7
2
3
1

28

System Calls

 Programming interface to services provided
by the OS

 Typically written in a high-level language (C
or C++)

 Mostly accessed by programs using APIs
 Three common APIs:

 Win32 API for Windows
 POSIX API for POSIX-based systems (UNIX,

Linux, Mac OS X)
This is the emphasis for COMP2303

 Java API for the Java virtual machine (JVM)

C
S

S
E

2
3
1
0

7
2
3
1

29

Reducing System Call
Overhead

 Problem: The user-kernel mode distinction
poses a performance barrier
 Crossing this hardware barrier is costly.
 System calls take 10x-1000x more time than a

procedure call
 Solution: Perform some system functionality

in user mode
 Libraries (DLLs) can reduce number of system

calls,
by caching results (getpid) or
buffering (open/read/write vs. fopen/fread/fwrite).

C
S

S
E

2
3
1
0

7
2
3
1

30

OS Structure

 An OS is just a program:
 It has a main() function, which gets called only once

(during boot)
 Like any program, it consumes resources (such as

memory), can do silly things (like generating an
exception), etc.

 But it is a very strange program:
 It is “entered” from different locations in response to

external events
 It does not have a single thread of control, it can be

invoked simultaneously by two different events (e.g. sys
call & an interrupt)

 It is not supposed to terminate
 It can execute any instruction in the machine

C
S

S
E

2
3
1
0

7
2
3
1

31

Booting the System

 CPU loads boot program from ROM (e.g. BIOS in PC’s)
 Boot program:

 Examines/checks machine configuration (number of
CPU’s, how much memory, number & type of hardware
devices, etc.)

 Builds a configuration structure describing the hardware
 Loads the operating system, and gives it the

configuration structure
 Operating system initialization:

 Initialize kernel data structures
 Initialize the state of all hardware devices
 Creates a number of processes to start operation (e.g.

getty in UNIX, the Windowing system in Windows)

C
S

S
E

2
3
1
0

7
2
3
1

32

Operating System in Action

 After basic processes have started, the OS runs user
programs, if available, otherwise enters the idle loop

 In the idle loop:
 OS executes an infinite loop (UNIX)
 OS performs some system management & profiling
 OS halts the processor and enter in low-power mode

(notebooks)
 OS computes some function (DEC’s VMS on VAX

computed pi)
 OS wakes up on:

 interrupts from hardware devices
 traps from user programs
 exceptions from user programs

