
School of Information Technology and Electrical Engineering
The University of Queensland

C
S

S
E

2
3
1
0

7
2
3
1

C
om

pu
te

r
S

ys
te

m
s

P
rin

ci
pl

es
 +

P

ro
gr

am
m

in
g

Week 3.1

Introduction to Operating Systems

C
S

S
E

2
3
1
0

7
2
3
1

2

Lecture Outline

 What is an operating system?
 Different views of operating systems
 History of operating systems
 Example operating systems
 Hardware support
 OS organisation

 Slide Credits
 E.N. Elnozahy, U Texas
 R. Chandra, Cornell University

C
S

S
E

2
3
1
0

7
2
3
1

3

What is an Operating
System?

 Write down what you think an operating
system does.

 [Discussion to take place in class]

C
S

S
E

2
3
1
0

7
2
3
1

4

C
S

S
E

2
3
1
0

7
2
3
1

5

C
S

S
E

2
3
1
0

7
2
3
1

6

Break

C
S

S
E

2
3
1
0

7
2
3
1

7

The 5 Views of OS

 Your view of an OS depends on who you
are:
 The hardware view
 The operating system designer’s view
 The application programmer’s view
 The end-user’s view
 The system administrator’s view

C
S

S
E

2
3
1
0

7
2
3
1

8

The Hardware View

 The operating system is the layer of
software that interacts directly with the
hardware, concerns revolve around:
 The boot process
 Devices and how the OS can use them
 The interactions between H/W and OS

C
S

S
E

2
3
1
0

7
2
3
1

9

The OS Designer’s View

 The interest revolves mainly about the
OS itself, its internal structure, its
efficiency, performance, data
structures, etc..
 How can we make the OS more efficient
 How can we add more functionality?
 How do we debug the OS? Make it more

reliable, scalable, etc..

C
S

S
E

2
3
1
0

7
2
3
1

10

The Application
Programmer’s View

 The OS is like a library with a well defined set
of API’s
 What abstractions are available from the OS?
 How well is the API structured? Not too low-

level, or high-level.
 How portable is the interface?
 Protection of the intellectual investment--

don’t want to keep rewriting the same
program for each new OS release.
Explains why Windows has been so successful!

C
S

S
E

2
3
1
0

7
2
3
1

11

The End-User’s View

 The OS is just a program that happens to be
pre-installed
 Must not crash or externalize the ugly aspects of

the machine
 Must protect investment in existing software &

applications
 Users care about applications, not the OS
 A good OS is the one that is most transparent

 Contrast Windows, MacOS & UNIX

C
S

S
E

2
3
1
0

7
2
3
1

12

The System Administrator
View

 An OS is a program that allows the efficient
and equitable usage of resources:
 How can it track usage for accounting?
 How easy is it to install new software?
 Security
 Fairness

 Contrast Windows, MacOS, UNIX, and
mainframe systems

C
S

S
E

2
3
1
0

7
2
3
1

13

History of Operating
Systems

 Earliest computers had no OS
 programmed directly

 Initially, OS was just a run-time library
 You linked your application with the OS,

loaded the whole program into memory, and ran it
 How do you get it into the computer? Through the

control panel!
 Simple batch systems (mid 1950s – mid 1960s)

 Permanently resident OS in primary memory
 Loaded a single job from card reader, ran it, loaded next

job...
 Control cards in the input file told the OS what to do
 Spooling allowed jobs to be read in advance onto

tape/disk
C

S
S

E
2
3
1
0

7
2
3
1

1414

Multiprogramming
Systems

 Multiprogramming systems increased utilization
 Developed in the 1960s
 Keeps multiple runnable jobs loaded in memory
 Overlaps I/O processing of a job with computation of another
 Benefits from I/O devices that can operate asynchronously
 Requires the use of interrupts and DMA
 Optimizes for throughput at the cost of response time

C
S

S
E

2
3
1
0

7
2
3
1

15

Time Sharing Systems

 Timesharing (1970s) allows interactive
 computer use

 Users connect to a central machine through a
terminal

 User feels as if they have the entire machine
 Based on time-slicing: divides CPU equally among the

users
 Allows active viewing, editing, debugging, executing

process
 Security mechanisms needed to isolate users
 Requires memory protection hardware for isolation
 Optimizes for response time at the cost of throughput

C
S

S
E

2
3
1
0

7
2
3
1

1616

Personal Operating
Systems

 PC OS’s, 1974+
 Apple II, and others

 MSDOS 1980+
 The PC revolution

 Windowing OS 1983+
 Apple (MacOS) & Xerox (Pilot OS)
 Windows 3.1, OS/2

 Computers are cheap everyone has a
computer

 Initially, the OS was a library
 Advanced features were added back

 Multiprogramming, memory protection,
etc

C
S

S
E

2
3
1
0

7
2
3
1

17

Distributed Operating
Systems

 Cluster of individual machines
 Over a LAN or WAN or fast interconnect
 No shared memory or clock

 Asymmetric vs. symmetric clustering
 Sharing of distributed resources, hardware

and software
 Resource utilization, high availability

 Permits some parallelism, but speedup is not
the issue

 SANs, Oracle Parallel Server

C
S

S
E

2
3
1
0

7
2
3
1

18

Parallel Operating
Systems

 Multiprocessor or tightly coupled
systems

 Many advantages:
 Increased throughput
 Cheaper
 More reliable

 Asymmetric vs. symmetric
multiprocessing
 Master/slave vs. peer relationships

C
S

S
E

2
3
1
0

7
2
3
1

1919

Real Time Operating
Systems

 Goal: To cope with rigid time constraints
 Hard real-time

 OS guarantees that applications will meet their
deadlines

 Examples: TCAS, health monitors, factory control
 Soft real-time

 OS provides prioritization, on a best-effort basis
 No deadline guarantees, but bounded delays
 Examples: most electronic appliances

 Real-time means “predictable”
 NOT fast

C
S

S
E

2
3
1
0

7
2
3
1

20

OS Types & Examples

 Desktop: MSDOS, Windows 95/98/ME/NT/
2000/XP/Vista/7, MacOS, Linux

 Workstation / Server: HPUX, AIX, Solaris,
Linux, BSD (many variants), Windows Server,
Novell Netware

 Minicomputers: OS/400, VMS
 Mainframes: CMS/MVS (now z/OS)
 Embedded: OS-9, VxWorks, Lynx, PalmOS,

Windows CE, Symbian OS, uCLinux, IOS
 Some of these are real-time

C
S

S
E

2
3
1
0

7
2
3
1

Short Break

Stand up and stretch

C
S

S
E

2
3
1
0

7
2
3
1

22

Hardware Support

 Operating system needs to:
 control I/O devices
 control access to the hardware

all while denying these privileges to user programs:
 for protection
 for abstraction/ease of use

 Hardware supports two modes of operation (or more):
 access to hardware & I/O devices is done through

privileged instructions, these are only available in
“supervisor” mode

 privileged instructions cannot be executed in “user”
mode

C
S

S
E

2
3
1
0

7
2
3
1

23

Implementation

 Using a bit in the processor (i.e. 0 or 1)
 Operating system code runs in supervisor

mode, while user program code runs in user
mode

 Switching from user to supervisor mode occurs
on:
 interrupts: hardware devices needing

service
 exceptions: user program acts silly (divide

by 0, bus error, etc)
 trap instructions: user program requires OS

service (system call)
 Switching back occurs by an RTI instruction

C
S

S
E

2
3
1
0

7
2
3
1

24

On Interrupts

 Hardware calls the operating system at a pre-specified
location

 Operating system saves state of the user program
 Operating system identifies the device and cause of

interrupt
 Responds to the interrupt (possibly killing program,

<CTRL-C>)
 Operating system restores state of the user program (if

applicable) or some other user program
 Execute an RTI instruction to return to the user program
 User program continues exactly at the same point it was

interrupted.

Key Fact: None of this is visible to the user program

C
S

S
E

2
3
1
0

7
2
3
1

25

On Exceptions

 Hardware calls the operating system at a pre-specified
location

 Operating system identifies the cause of the exception
(e.g. divide by 0)

 If user program has exception handling specified, then
OS adjust the user program state so that it calls its
handler

 Execute an RTI instruction to return to the user program
 If user program did not have a specified handler, then

OS kills it and runs some other user program, as
available

Key Fact: Effects of exceptions are visible to user
programs and cause abnormal execution flow

C
S

S
E

2
3
1
0

7
2
3
1

26

On System Calls

 User program executes a trap instruction (system call)
 Hardware calls the operating system at a pre-specified

location
 Operating system identifies the required service and

parameters, e.g. open(filename, O_RDONLY);
 Operating system executes the required service
 Operating system sets a register to contain the result of

call
 Execute an RTI instruction to return to the user program
 User program receives the result and continues

Key Fact: To the user program, it appears as a
function call executed under program control

C
S

S
E

2
3
1
0

7
2
3
1

27

Crossing Protection
Boundaries

 User calls OS procedure for “privileged” operations
 Calling a kernel mode service from user mode program:

 Using System Calls
 System Calls switches execution to kernel mode

User process System Call

Trap
Mode bit = 0

Save Caller’s state Execute system call Restore state

Return (RTI)
Mode bit = 1

Resume process

User Mode
Mode bit = 1

Kernel Mode
Mode bit = 0

C
S

S
E

2
3
1
0

7
2
3
1

28

System Calls

 Programming interface to services provided
by the OS

 Typically written in a high-level language (C
or C++)

 Mostly accessed by programs using APIs
 Three common APIs:

 Win32 API for Windows
 POSIX API for POSIX-based systems (UNIX,

Linux, Mac OS X)
This is the emphasis for COMP2303

 Java API for the Java virtual machine (JVM)

C
S

S
E

2
3
1
0

7
2
3
1

29

Reducing System Call
Overhead

 Problem: The user-kernel mode distinction
poses a performance barrier
 Crossing this hardware barrier is costly.
 System calls take 10x-1000x more time than a

procedure call
 Solution: Perform some system functionality

in user mode
 Libraries (DLLs) can reduce number of system

calls,
by caching results (getpid) or
buffering (open/read/write vs. fopen/fread/fwrite).

C
S

S
E

2
3
1
0

7
2
3
1

30

OS Structure

 An OS is just a program:
 It has a main() function, which gets called only once

(during boot)
 Like any program, it consumes resources (such as

memory), can do silly things (like generating an
exception), etc.

 But it is a very strange program:
 It is “entered” from different locations in response to

external events
 It does not have a single thread of control, it can be

invoked simultaneously by two different events (e.g. sys
call & an interrupt)

 It is not supposed to terminate
 It can execute any instruction in the machine

C
S

S
E

2
3
1
0

7
2
3
1

31

Booting the System

 CPU loads boot program from ROM (e.g. BIOS in PC’s)
 Boot program:

 Examines/checks machine configuration (number of
CPU’s, how much memory, number & type of hardware
devices, etc.)

 Builds a configuration structure describing the hardware
 Loads the operating system, and gives it the

configuration structure
 Operating system initialization:

 Initialize kernel data structures
 Initialize the state of all hardware devices
 Creates a number of processes to start operation (e.g.

getty in UNIX, the Windowing system in Windows)

C
S

S
E

2
3
1
0

7
2
3
1

32

Operating System in Action

 After basic processes have started, the OS runs user
programs, if available, otherwise enters the idle loop

 In the idle loop:
 OS executes an infinite loop (UNIX)
 OS performs some system management & profiling
 OS halts the processor and enter in low-power mode

(notebooks)
 OS computes some function (DEC’s VMS on VAX

computed pi)
 OS wakes up on:

 interrupts from hardware devices
 traps from user programs
 exceptions from user programs

