o (@)}
nQ + £
Ll 808E
) aEog
0 EGES
O Onhaa
Week 2.2
More C
School of Information Technology and Electrical Engineering
The University of Queensland
LL
% Today
p)
O -
More C
— Function pointers
— Casting
— Scope
— Storage classes and qualifiers
Linked lists

2310
7231

Switch statements

CSSE

I— ——seeeaaaaanma————tt
Switch = multi-way decision
Example:

switch (argc)

case 1: /* No argument supplied */
debug=0;
break;

case 2: /* One argument supplied */

if(strcmp(argv[1], "-debug") == 0)

{ /* First argument was -debug */
debug=1;
break;

}

/* else drops through */

default: /* All other cases */
printf("Usage: %s [-debug]\n", argv[0]);
exit(1);
} 3

2310
7231

Switch statements (cont.)

CSSE

I s
Statement syntax:

switch (expression)

{
case const-expr: statements
case const-expr: statements
default: statements
}

default is optional
— If omitted and no matching pattern, nothing executed
Execution starts at matching expression
Continues until break statement or end of switch
Usually faster than if-else-if-else-if..
— May be implemented with table lookup
Expression must be integral type, can’t compare strings!

4

2310
7231

break and continue
statements

CSSE

Can be used inside loops to alter flow of control

break

— terminates execution of innermost while, do, for
or switch statement

continue

— terminates execution of body of innermost
while, do or for statement and transfers control
to end of body

* i.e. will perform loop again if conditional allows it

Illustration in class

2310
7231

break/continue

CSSE

2310
7231

Unions

CSSE

Like a structure (struct), but can only contain one of its
elements at a time

Example:
union U {
double d;
char c[2];
int 1;
1 ¥
lllustration in class
Member access is as for structures
— selection (.)
— indirection (->) for pointers to unions
Programmer has to keep track of which type is stored

2310
7231

union vs struct layout

CSSE

2310
7231

CSSE

2310
7231

CSSE

Function Pointers

Often useful to be able to dynamically choose the

function to be called
— e.g. instead of
if(i==1) {
fnone(..);
} else if (i==2) {
fnTwo(..);
} else if (i==3) {
fnThree(..);
} else ..

Note: can combine
declaration and
initialisation

— use

void (*fnArray[NUM])();

/* Declares fnArray to be
** an array of pointers to
** functions which return
** void. */

fnArray[1] = fnOne;
fnArray[2] = fnTwo;

Then call with
fnArray[i](..);

or equivalently
(*fnArray[i]) (..);

10

2310
7231

Some examples

CSSE

int (*fp)(int,char*);

— Declares fp to be a pointer to a function which
takes int and char* arguments and returns int

void (*fp2[10])(double);

— Declares fp2 to be an array (of size 10) of
pointers to functions taking a double parameter
and returning nothing

int (*fp3)();

— Declares fp3 to be a pointer to a function

returning int.

— Argument types unknown and won’t be
checked by the compiler.
« Up to programmer to use this correctly. 11

2310
7231

Exercise (4)

CSSE

-
What type is var in each of the following?

char *varl];

long var[10];

Int **var[10];

void (*var)(int,double);

int *(*var[51)();

void (*var)(int* (*)(int), int);

You have 2 minutes J

2310
7231

Type casting

CSSE

-
Often necessary to convert from one type
to another

— Some conversions happen automatically

* e.g. function arguments, assignment operations,
arithmetic expressions

* Note: doesn’t happen for functions like printf which
support variable argument types

— Up to programmer to get it right!
— Other conversions require a cast
* e.g. dest = (type-name)source;
— Good to use an explicit cast anyway

13

2310
7231

Automatic conversions

e
From

-+ CSSE

o

Any real type Any integer type

(void *) (a) The constant O
(b) Pointer to object
) (void*)

o)
O

The constant 0
(b) Pointer to compatible object

Pointer to object

=z

Pointer to function (a) The constant 0
(b) Pointer to compatible function

14

2310
7231

Variable Scope

B
Scope is the region of a program over which
the declaration is visible

Common scopes are

— file scope
* visible from declaration point to end of file
— function scope

* visible from declaration point to end of function
— includes arguments to function

— block scope
* visible from declaration point to end of block

Variable declarations can be hidden
Example to be given in class

CSSE

15

2310
7231

CSSE

16

2310
7231

Storage classes

CSSE

-

C variable declarations have an extent or storage class
- auto
+ Variable has local (automatic) extent, i.e. removed at end of block
* Permitted within a block only (i.e. not top level)
* This is the default so rarely seen
— extern (for variables or functions)
« Variable/function is external to all functions, i.e. can be accessed
by name by any function
* Globally accessible - linker must know about the name
* Must be defined once somewhere (can be declared anywhere)
— register
* Hint to compiler to put variable in a register, otherwise like auto
— static (for variables or functions)
* Name is only accessible in this file (i.e. not exported to linker)
* For variables - extent is static - variable lasts for life of program

Examples to be presented in class

17

2310
7231

CSSE

18

2310
7231

CSSE

Type qualifiers

const

— Indicates that the value can’t change, e.g.

 int atoi(const char* str);
— characters pointed to by str can’t be changed

* const int constant_value = 37;
 int * const const_pointer;
e const int * pointer_to_const;

volatile

— Indicates that the value can change in ways not
under control of the program

— Often used for interacting with hardware, special

memory addresses etc
19

