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More C
— Function pointers
— Casting
— Scope
— Storage classes and qualifiers
Linked lists
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Switch statements

CSSE

I— ——seeeaaaaanma————tt
Switch = multi-way decision
Example:

switch (argc)

case 1: /* No argument supplied */
debug=0;
break;

case 2: /* One argument supplied */

if(strcmp(argv[1], "-debug") == 0)

{ /* First argument was -debug */
debug=1;
break;

}

/* else drops through */

default: /* All other cases */
printf("Usage: %s [-debug]\n", argv[0]);
exit(1);
} 3
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Switch statements (cont.)

CSSE

I s
Statement syntax:

switch (expression)

{
case const-expr: statements
case const-expr: statements
default: statements
}

default is optional
— If omitted and no matching pattern, nothing executed
Execution starts at matching expression
Continues until break statement or end of switch
Usually faster than if-else-if-else-if..
— May be implemented with table lookup
Expression must be integral type, can’t compare strings!
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break and continue
statements

CSSE

Can be used inside loops to alter flow of control

break

— terminates execution of innermost while, do, for
or switch statement

continue

— terminates execution of body of innermost
while, do or for statement and transfers control
to end of body

* i.e. will perform loop again if conditional allows it

Illustration in class
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break/continue
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Unions

CSSE

Like a structure (struct), but can only contain one of its
elements at a time

Example:
union U {
double d;
char c[2];
int 1;
1 ¥
lllustration in class
Member access is as for structures
— selection (.)
— indirection (->) for pointers to unions
Programmer has to keep track of which type is stored
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union vs struct layout
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Function Pointers

Often useful to be able to dynamically choose the

function to be called
— e.g. instead of
if(i==1) {
fnone(..);
} else if (i==2) {
fnTwo(..);
} else if (i==3) {
fnThree(..);
} else ..

Note: can combine
declaration and
initialisation

— use

void (*fnArray[NUM])();

/* Declares fnArray to be
** an array of pointers to
** functions which return
** void. */

fnArray[1] = fnOne;
fnArray[2] = fnTwo;

Then call with
fnArray[i](..);

or equivalently
(*fnArray[i]) (..);
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Some examples

CSSE

int (*fp)(int,char*);

— Declares fp to be a pointer to a function which
takes int and char* arguments and returns int

void (*fp2[10])(double);

— Declares fp2 to be an array (of size 10) of
pointers to functions taking a double parameter
and returning nothing

int (*fp3)();

— Declares fp3 to be a pointer to a function

returning int.

— Argument types unknown and won’t be
checked by the compiler.
« Up to programmer to use this correctly. 11
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Exercise (4)
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What type is var in each of the following?

char *varl];

long var[10];

Int **var[10];

void (*var)(int,double);

int *(*var[51)();

void (*var)(int* (*)(int), int);

You have 2 minutes J
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Type casting
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Often necessary to convert from one type
to another

— Some conversions happen automatically

* e.g. function arguments, assignment operations,
arithmetic expressions

* Note: doesn’t happen for functions like printf which
support variable argument types

— Up to programmer to get it right!
— Other conversions require a cast
* e.g. dest = (type-name)source;
— Good to use an explicit cast anyway
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Automatic conversions

e
From

-+ CSSE
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Any real type Any integer type

(void *) (a) The constant O
(b) Pointer to object
) (void*)

o)
O

The constant 0
(b) Pointer to compatible object

Pointer to object

=z

Pointer to function (a) The constant 0
(b) Pointer to compatible function

14
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Variable Scope

B
Scope is the region of a program over which
the declaration is visible

Common scopes are

— file scope
* visible from declaration point to end of file
— function scope

* visible from declaration point to end of function
— includes arguments to function

— block scope
* visible from declaration point to end of block

Variable declarations can be hidden
Example to be given in class

CSSE

15

2310
7231

CSSE

16



2310
7231

Storage classes
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C variable declarations have an extent or storage class
- auto
+ Variable has local (automatic) extent, i.e. removed at end of block
* Permitted within a block only (i.e. not top level)
* This is the default so rarely seen
— extern (for variables or functions)
« Variable/function is external to all functions, i.e. can be accessed
by name by any function
* Globally accessible - linker must know about the name
* Must be defined once somewhere (can be declared anywhere)
— register
* Hint to compiler to put variable in a register, otherwise like auto
— static (for variables or functions)
* Name is only accessible in this file (i.e. not exported to linker)
* For variables - extent is static - variable lasts for life of program

Examples to be presented in class
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Type qualifiers

const

— Indicates that the value can’t change, e.g.

 int atoi(const char* str);
— characters pointed to by str can’t be changed

* const int constant_value = 37;
 int * const const_pointer;
e const int * pointer_to_const;

volatile

— Indicates that the value can change in ways not
under control of the program

— Often used for interacting with hardware, special

memory addresses etc
19



