
School of Information Technology and Electrical Engineering
The University of Queensland

C
S

S
E

2
3
1
0

7
2
3
1

C
om

pu
te

r 
S

ys
te

m
s 

P
rin

ci
pl

es
 +

 
P

ro
gr

am
m

in
g

Week 2.2

More C

C
S

S
E

2
3
1
0

7
2
3
1

2

Today

More C
– Function pointers
– Casting
– Scope
– Storage classes and qualifiers

Linked lists



C
S

S
E

2
3
1
0

7
2
3
1

3

Switch statements

Switch = multi-way decision
Example:

switch (argc)
{
    case 1: /* No argument supplied */
        debug=0;
        break;
    case 2: /* One argument supplied */
        if(strcmp(argv[1], "-debug") == 0)
        {   /* First argument was –debug */
            debug=1;
            break;
        }
        /* else drops through */
    default: /* All other cases */
        printf("Usage: %s [-debug]\n", argv[0]);
        exit(1);
}

C
S

S
E

2
3
1
0

7
2
3
1

4

Switch statements (cont.)

Statement syntax:
switch (expression)
{

case const-expr: statements
case const-expr: statements
default: statements

}
default is optional

– If omitted and no matching pattern, nothing executed
Execution starts at matching expression
Continues until break statement or end of switch
Usually faster than if-else-if-else-if…

– May be implemented with table lookup
Expression must be integral type, can’t compare strings!



C
S

S
E

2
3
1
0

7
2
3
1

5

break and continue 
statements

Can be used inside loops to alter flow of control

break
– terminates execution of innermost while, do, for 

or switch statement

continue
– terminates execution of body of innermost 
while, do or for statement and transfers control 
to end of body
• i.e. will perform loop again if conditional allows it

Illustration in class

C
S

S
E

2
3
1
0

7
2
3
1

6

break/continue



C
S

S
E

2
3
1
0

7
2
3
1

7

Unions

Like a structure (struct), but can only contain one of its 
elements at a time

Example:

union U {
    double d;
    char c[2];
    int i;
};

Illustration in class

Member access is as for structures
– selection (.)
– indirection (->) for pointers to unions

Programmer has to keep track of which type is stored

C
S

S
E

2
3
1
0

7
2
3
1

8

union vs struct layout



C
S

S
E

2
3
1
0

7
2
3
1

9

Function Pointers

Often useful to be able to dynamically choose the 
function to be called

– e.g. instead of

if(i==1) {
    fnOne(…);
} else if (i==2) {
    fnTwo(…);
} else if (i==3) {
    fnThree(…);
} else …

Note: can combine
declaration and
initialisation

– use
void (*fnArray[NUM])();
/* Declares fnArray to be
** an array of pointers to
** functions which return
** void. */
fnArray[1] = fnOne;
fnArray[2] = fnTwo;
…

– Then call with 
fnArray[i](…); 

– or equivalently
(*fnArray[i])(…);

C
S

S
E

2
3
1
0

7
2
3
1

10



C
S

S
E

2
3
1
0

7
2
3
1

11

Some examples

int (*fp)(int,char*);
– Declares fp to be a pointer to a function which 

takes int and char* arguments and returns int

void (*fp2[10])(double);
– Declares fp2 to be an array (of size 10) of 

pointers to functions taking a double parameter 
and returning nothing

int (*fp3)();
– Declares fp3 to be a pointer to a function 

returning int.
– Argument types unknown and won’t be 

checked by the compiler. 
• Up to programmer to use this correctly.

C
S

S
E

2
3
1
0

7
2
3
1

12

Exercise (4)

What type is var in each of the following?
char *var[];
long var[10];
int **var[10];
void (*var)(int,double);
int *(*var[5])();
void (*var)(int* (*)(int), int);

You have 2 minutes



C
S

S
E

2
3
1
0

7
2
3
1

13

Type casting

Often necessary to convert from one type 
to another

– Some conversions happen automatically
• e.g. function arguments, assignment operations, 

arithmetic expressions
• Note: doesn’t happen for functions like printf which 

support variable argument types
– Up to programmer to get it right!

– Other conversions require a cast
• e.g. dest = (type-name)source;

– Good to use an explicit cast anyway

C
S

S
E

2
3
1
0

7
2
3
1

14

Automatic conversions

To From

Any real type Any integer type

(void *) (a) The constant 0
(b) Pointer to object
(c) (void*)

Pointer to object (a) The constant 0
(b) Pointer to compatible object

Pointer to function (a) The constant 0
(b) Pointer to compatible function



C
S

S
E

2
3
1
0

7
2
3
1

15

Variable Scope

Scope is the region of a program over which 
the declaration is visible
Common scopes are

– file scope
• visible from declaration point to end of file

– function scope
• visible from declaration point to end of function

– includes arguments to function

– block scope
• visible from declaration point to end of block

Variable declarations can be hidden
Example to be given in class

C
S

S
E

2
3
1
0

7
2
3
1

16



C
S

S
E

2
3
1
0

7
2
3
1

17

Storage classes

C variable declarations have an extent or storage class
– auto

• Variable has local (automatic) extent, i.e. removed at end of block
• Permitted within a block only (i.e. not top level)
• This is the default so rarely seen

– extern (for variables or functions)
• Variable/function is external to all functions, i.e. can be accessed 

by name by any function
• Globally accessible – linker must know about the name
• Must be defined once somewhere (can be declared anywhere)

– register
• Hint to compiler to put variable in a register, otherwise like auto

– static (for variables or functions)
• Name is only accessible in this file (i.e. not exported to linker)
• For variables – extent is static – variable lasts for life of program

Examples to be presented in class

C
S

S
E

2
3
1
0

7
2
3
1

18



C
S

S
E

2
3
1
0

7
2
3
1

19

Type qualifiers

const
– Indicates that the value can’t change, e.g.

• int atoi(const char* str);
– characters pointed to by str can’t be changed

• const int constant_value = 37;
• int * const const_pointer;
• const int * pointer_to_const;

volatile
– Indicates that the value can change in ways not 

under control of the program
– Often used for interacting with hardware, special 

memory addresses etc


