
School of Information Technology and Electrical Engineering
The University of Queensland

C
S

S
E

2
3
1
0

7
2
3
1

C
om

pu
te

r 
S

ys
te

m
s 

P
rin

ci
pl

es
 +

 
P

ro
gr

am
m

in
g

Week 2.1

Version Control

C
S

S
E

2
3
1
0

7
2
3
1

2

Outline (svn)

l High-level
n Concepts
n Operations

l Subversion
n Demo

l Subversion versus DIY



C
S

S
E

2
3
1
0

7
2
3
1

3

Outline (svn)

l High-level
n Concepts
n Operations

l Subversion
n Demo

l Subversion versus DIY

C
S

S
E

2
3
1
0

7
2
3
1

4

Version Control

l Version control (source control) – Tools to 
manage changes during a project’s 
development.

n Many systems. Eg cvs, subversion(svn), git, 
bazaar, source safe, mercurial, ….

n Lots of arguments about the best tool or method.
l The main concepts transfer between tools.
l We are only focusing on centralized VC. 
l See http://svnbook.red-bean.com.



C
S

S
E

2
3
1
0

7
2
3
1

5

Concepts

l Repository – stores the history of the 
project. You do not modify this directly.

l Working copy – a copy of the files in the 
project where normal programming 
activity happens. (Could be on a 
different computer to the repository).

l State* – the contents of all the files in 
the project.

C
S

S
E

2
3
1
0

7
2
3
1

6

Operations

l Single user
n checkout – I’d like a working copy.
n commit – remember this state.
n add/remove/rename 
n diff/status – what have I changed?
n clean copy/revert – put it back the way it 

was.
n tag – assign a label to a state.

l Eg: ass1 complete, release_V1



C
S

S
E

2
3
1
0

7
2
3
1

7

Operations

l If multiple users are committing to the same 
repository, there mat be commits which you 
don't know about.

l update – Bring my working copy up to date 
with changes from the repository. 

n What if I've made changes as well?
n Intelligent merging rather than blind copying.
n Will report a conflict if merging won't work.

C
S

S
E

2
3
1
0

7
2
3
1

8

Operations

l Blame/praise/annotate – who changed that 
line last and in which revision.

l Branching – make a separate line of 
development within the repository. Changes 
to a branch do not affect other branches or 
the “trunk”.

l Useful for experiments or when making
large changes without disrupting people
until they are done.



C
S

S
E

2
3
1
0

7
2
3
1

9

Subversion (svn)

l svn is a replacement for CVS.
l svn is self documenting.

svn help 
svn help command

l svn checkout URL working-dir
n URL – where to find the repository.

l https://example.com/svn/project/trunk
l A working copy has hidden audit info 

in .svn directories.

C
S

S
E

2
3
1
0

7
2
3
1

10

Svn demo

l svn status
l svn diff
l svn revert
l svn help
l svn commit

n Editor for log messages (or –m)



C
S

S
E

2
3
1
0

7
2
3
1

11

Version numbers

l In svn, the repository as a whole has a 
version number. Each time a commit is 
made the version number goes up.

l cvs has a more complicated system.

C
S

S
E

2
3
1
0

7
2
3
1

12

Svn demo

l svn add files
l svn move oldname newname
l svn mkdir dirname
l svn rm

n Note: The above operations need 
to be committed.

l svn status



C
S

S
E

2
3
1
0

7
2
3
1

13

Svn demo

l svn status -u
l Dealing with conflict

n svn resolve - “I have investigated and 
fixed the problem”

n svn revert - “Forget about my changes”

C
S

S
E

2
3
1
0

7
2
3
1

14

Svn vs DIY

l How does svn compare with doing your 
own backups?

n You can view the project in any previous 
committed state.

l Backup systems might only be able to produce the 
latest state. Or, they thin out older backups.

n Efficiency – (for text formats) svn stores 
differences between files rather than a whole 
new copy.



C
S

S
E

2
3
1
0

7
2
3
1

15

Svn vs DIY

l Times when backups/snapshots are made 
may not coincide with states you wish to 
preserve.

l How do you manage multiple developers?


