
School of Information Technology and Electrical Engineering
The University of Queensland

C
SS

E
23
10

72
31

C
om

pu
te

r
S

ys
te

m
s

P
rin

ci
pl

es
 +

P

ro
gr

am
m

in
g

Week 1.1

Introduction

C
SS

E
23
10

72
31

2

Welcome

 CSSE2310 / CSSE7321
● Computer Systems Principles and

Programming

● Teaching Staff
● Dr Joel Fenwick
● A/Prof Peter Sutton
● Tutors (Adam, Nathaniel, Pat, Richard,

Simon, Thomas)

● Rule 0: If you have questions, then ask.

C
SS

E
23
10

72
31

3

What’s This Course All
About?

●Exposure to UNIX operating system
● Shell commands

●Underlying Principles of
● Operating Systems
● Computer Networks

●Systems Programming C

●You will become more effective programmers
and system designers by having knowledge of
the underlying systems

C
SS

E
23
10

72
31

4

Resources

 Course website
 http://courses.itee.uq.edu.au/csse2310/2012s1
 Lecture Slides

 Usually posted just in advance of lectures
 Pracs
– Programming problems and exercises

 Notices
 Distributed via newsgroup, subject site
 by email if urgent

C
SS

E
23
10

72
31

5

Communication

 Newsgroup: uq.itee.csse2310 – Best
method to communicate with staff and other
students.

● [less good] MyNewsgroups on my.uq
● Reader software: eg mozilla thunderbird

● Joel:
● Email: joelfenwick@uq.edu.au
● Anonymous feedback link on the subject page.

● If I don't know who you are, then I can't
respond.

● Very little on the net is truly anonymous

C
SS

E
23
10

72
31

6

Course Profile

●Describes
 The course in detail
 What you can expect
 What we expect of you

●You should obtain and read the
course profile
●Now for some of the details …

C
SS

E
23
10

72
31

7

Assumed Background

●You must know something about programming

●The more comfortable you are with programming in general,
the easier you will find this course
●You should also have …
… Some knowledge of computer systems

… Knowledge of binary representations (2’s complement etc)

… Knowledge of binary operations (AND, OR, XOR, …)

… Ideally, some prior exposure to C

C
SS

E
23
10

72
31

8

Other Courses

 CSSE2310 leads
to more detailed
courses in the area
of computer systems
and networks

CSSE2310

COMP3301

COMS3200

Operating Systems
Architecture

Computer
Networks I

COSC3500
COMS3000

Info.
SecurityCOMS3010

Embedded
Systems

C
SS

E
23
10

72
31

9

Textbooks

 Glass & Ables
 UNIX for

Programmers and
Users

 Linux for
Programmers and
Users

 Covers most
aspects of the
course

C
SS

E
23
10

72
31

10

Textbooks (cont.)

 Harbison and Steele -
 C: A Reference Manual (5th

edition)
 Highly recommended as a

reference on C
 Kernighan and

Ritchie
 The C

Programming
Language
(2nd ed, 1988)

 Does not cover C99

OR

C
SS

E
23
10

72
31

11

Assessment

 Assignments (100 marks total)
 Four Assignments

 Equal weight (25 marks) but not equal difficulty
 A1 – Simple C Programming
 A2 – debugging
 A3 and A4 – UNIX systems programming in C

 Exams (100 marks total)
 Mid-semester exam (in Friday lecture, week 7)

 Multiple choice, open book
 Final exam

 Written answers, open book
 Overall exam mark is better of

 30% mid-semester + 70% final
 15% mid-semester + 85% final

 Exams cover theory and programming

C
SS

E
23
10

72
31

12

Grade determination

 Final mark (out of 100) determined as
geometric mean of assignment and exam
marks (and then rounded to nearest integer)

 No minimum requirements on exam or
assignment marks.

 Grade determined from final mark

 CSSE7321 has different cutoffs

Finalmark=Assignmentmark×Exammark

7 = 85 to 100 4 = 50 to 64
6 = 75 to 84 3 = 45 to 49
5 = 65 to 74 2 = 20 to 44

C
SS

E
23
10

72
31

13

Late Submissions

 Assignments are all due electronically
 1,3,4 using subversion
 Submission by 11pm on due date
 20% per 24hrs (or part thereof) late penalty
 No submissions accepted more than 96 hours after the

deadline under any circumstances.

 Read course profile for the fine print!

C
SS

E
23
10

72
31

14

Plagiarism and Collusion

 All assignments are individual
 All submitted code must be your work
 Using code provided on CSSE2310 website is acceptable
 Use of any other published code is unacceptable

 ALL submitted code will be subject to plagiarism
and collusion detection

 Don’t copy or look at code from other students or allow
your code to be copied or seen – this is cheating

 Misconduct proceedings will be initiated if plagiarism
and/or collusion is found

 You are encouraged to discuss assignments but this
should not include sharing code

C
SS

E
23
10

72
31

15

Plagiarism and Collusion
(cont.)

 Assessment can serve (at least) two
purposes:
 Feedback to you on your learning
 Measuring your performance for the

purpose of generating a grade
 Plagiarism and/or collusion

compromises both of these

C
SS

E
23
10

72
31

16

What to do help you learn

 Lectures
 Tutorials (enroll if you have not already)
 Assignments (Not just testing what you've

learned elsewhere.)
• You will gain a better understanding of by doing the

assignments.
• Lectures do not give detailed instructions for

assignments.
• We don't discuss some problems until people ask

about them.
 Private study

C
SS

E
23
10

72
31

17

What to expect in pracs

 Exercises early in weeks.
 Eg intro to unix

 Teaching in some weeks.
 Eg make

 Work on assignments, get help.
 You may attend as many tutorials as you

wish but enrolled students have priority.

C
SS

E
23
10

72
31

18

What to expect in lectures

 Stand and stretch breaks half way through each hour
(approximately)

 10 minute break in the middle of Tuesday lecture
 Stories!
 Some practical examples, tool demos, explanations
 Take notes!

 Lecture slides don’t capture everything
 Lectures will generally cover higher level concepts

(except for weeks 2-4)
 Mid-semester exam in Friday lecture slot in week 7

C
SS

E
23
10

72
31

19

Things I may do during lectures

Ask questions
 “Why?” - you may need to justify

answers.
 I don't expect people to be able to

answer all questions immediately.
 May need to move quickly to give

someone else a chance.
 Dealing with some answers may require

material we haven't covered.

C
SS

E
23
10

72
31

20

Things I may do during lectures

Employ comical exaggeration
• Concepts are abstract
• Computers are fast
• Hard to differentiate between good and

bad solutions

C
SS

E
23
10

72
31

21

What we expect from you…

 Attendance at lectures
 You may be disadvantaged if you don’t attend

 Seek help if you’re having trouble
 Don’t leave it too late

 Hard work
 Ask students from previous years.

•Feedback and ideas (anonymous if you like)
 What can we improve?

• Especially if some aspect of the course is causing you
distress.

 What do you want to learn about?
• Course is pretty full so no major changes.

C
SS

E
23
10

72
31

22

Facilities

 Pracs in 78-{108, 208, 116, 336}
 PC lab, from which you can remotely access LINUX

server
 After hours access available

 You’ll need an access card – see the Faculty office
 Login using UQ password

 Server: moss.labs.eait.uq.edu.au
 Runs Linux
 Access from lab PCs possible, via

 ssh (command line)
 X-window (graphical)

 Remote access possible
 ssh to moss.labs.eait.uq.edu.au
 See http://studenthelp.itee.uq.edu.au/remote/

C
SS

E
23
10

72
31

23

Using your own hardware
(optional!)

 Connect to moss via ssh (putty)
 Work on your own computer. At your own risk.

Always test on moss! If it does not work on moss
it does not work!

 If your computer is running:

– Linux – Make sure you have gcc, make and
svn installed.

– MacOSX – You will need to install the X-
Code from your OS cd/app store.

– Windows – consider installing linux.

C
SS

E
23
10

72
31

24

Linux at home

 If you haven't done so already. This is a good
opportunity to try linux on your own hardware.

– Lots of people to answer questions.
– Can work without connecting to moss.

• Always test on moss.
 While we can answer questions we do not provide

support for install problems.

– We probably won't debug on your
hardware.

– If it eats your pets and destroys your
computer – not our fault!

C
SS

E
23
10

72
31

25

Install options

 Virtual machine: A program simulates a
whole computer on which you can install
and run an OS.

– VirtualBox, vmware, parallels
 Dual boot: Choose between a number of

OS at boot time. (Need to reboot to
switch).

– Wubi – windows installer for Ubuntu

– Debian, Ubuntu, many others
 Use your isp's mirrors where possible

School of Information Technology and Electrical Engineering
The University of Queensland

C
SS

E
23
10

72
31

C
om

pu
te

r
S

ys
te

m
s

P
rin

ci
pl

es
 +

P

ro
gr

am
m

in
g

Week 1.2

C-Introduction

C
SS

E
23
10

72
31

27

Pracs

l Enrol in two sessions (one P session and one C session) per
week.

l Only P sessions run in week 1.
l Over the next week or so [this will take more than tute time]:

● Unix tutorial exercise
● C programming tutorials
● C programming exercises

C
SS

E
23
10

72
31

28

Lecture Outline

l UNIX editors
l Building C programs
l C Programming Language

n Basic structure of a program
n Quick overview of some features
n Arrays
n Pointers
n Structures
n Preprocessor

C
SS

E
23
10

72
31

29

UNIX Editors

l It is highly recommended that you
learn to use a UNIX text editor

l Two popular editors, suitable for writing
programs are
n vi (or vim – “vi improved”)
n emacs

l See pages 57 to 75 of Glass & Ables for
a brief introduction to both

l More details, including links to tutorials
are on the course website

C
SS

E
23
10

72
31

30

Building C programs

l C program files are typically named
<name>.c

i.e., lowercase .c extension
l Programs are compiled and linked to

produce an executable
l gcc command can be used for both

compilation and linking
n gcc (used to be GNU C Compiler, now

GNU Compiler Collection) is a free
compiler collection – available for many
systems

C
SS

E
23
10

72
31

31

Hello World
C

SS
E

23
10

72
31

32

Compilation and Linking

l Explanation in class

C
SS

E
23
10

72
31

33

Use of gcc

l Compilation (production of object code)
n gcc –c name.c
n -c argument means compile but do not link
n Example above will produce file name.o

l Compilation and Linking in one step
n gcc name.c

l Links with standard C library and produces
executable named a.out

n gcc –o executable-name name.c
l -o argument specifies the name of the output file

C
SS

E
23
10

72
31

34

Use of gcc (cont.)

l Linking
n gcc –o executable-name name.o

l Can give multiple filenames as
arguments, e.g.
n gcc –o executable-name name1.c name2.c name3.o

l Compiles and links as required
l Sometimes need to link with the maths

library (-lm) if program uses maths
functions
n gcc –o executable-name name1.c name2.c … -lm

C
SS

E
23
10

72
31

35

Why have separate
compilation/linking?

l Large programs are made up of multiple
source files

l If change one file, shouldn’t have to
recompile all the others, just
n recompile the one that changed
n link the object files to produced an executable

l Recompiling everything can be a slow process
l The make command (and Makefiles) provide

an automated mechanism to only recompile
files that change
n More details later

C
SS

E
23
10

72
31

36

C Programming Language

l In this course we expect you to…
n be able to write C programs from

scratch
n understand the meaning of C

programs
n be able to modify C programs
n understand how C programs use

memory
l Lectures can’t teach programming
l You’ll need to practice

C
SS

E
23
10

72
31

37

C Program – Basic Structure

l Main function name must be main
n This function is executed when program starts

l Blocks of code enclosed by braces { }
l C statements must end with a semicolon ;
l C statements are case sensitive

n variable is not the same as Variable
l Comments are within /* … */

n // accepted by newer compilers (C99)
l Comment is from // to end of line
l Initially, we’ll use /* … */ only

C
SS

E
23
10

72
31

38

Basic Structure (cont.)

l C program consists of
n Declarations
n Function definitions

l Function definitions have
n Variable declarations
n Statements

C
SS

E
23
10

72
31

39

Declaring Variables

l Declaration
n type-name variable-name, variable-name …;

l Examples
n char c;
n int day;
n unsigned int count;
n float expense, income;
n double pi;

l char, int, float, double are among the data types
supported by C

l C does not have a separate boolean type (Java does)
C99 has bool. You will need to #include<stdbool.h>

Single byte

Two single precision floating
point numbers

A double precision floating point number

Integers (size is machine
dependent) Integers can be
unsigned or signed (two’s
complement).

C
SS

E
23
10

72
31

40

Function Definitions

 return-type function-name (arg declaration)
{
 variable-declarations;
 …
 statements;
}

What type is returned by the function, e.g. int or void
Name of the function, e.g. main

Argument (parameter) declaration,
e.g. int a, float b

Variables used ONLY
within the function

The code which actually
does stuff

C
SS

E
23
10

72
31

41

Function Example

/*
Return the average of two integers
 (result will be rounded towards 0)
*/
int average(int a, int b) {
int avge;
avge = (a+b)/2 ;
return avge;
} These are expressions. Outer

expression is a statement.

The function returns a
result when finished

Statements

C
SS

E
23
10

72
31

42

C Constants

l Character constants
n Use single quotes, e.g. 'a', 'b', '1' etc
n Some special characters – backslash escaped

l '\n' = newline, '\'' = single quote, '\t' = tab, '\\' = backslash
l String constants

n Use double quotes (can include backslash escapes)
e.g. "abc \n \" hello\t"

l Integer constants
n Decimal – e.g. 3 , -27 , 65535 , +5
n Hexadecimal (leading 0x), e.g. 0x5F , 0xFFFF , 0xDEADBEEF
n Octal (leading 0), e.g. 0377 (= 255 decimal)

C
SS

E
23
10

72
31

43

C Constants

l Boolean (can always use integers)
n [c99] bool, true, false

l Floating point constants
n Include decimal point (.) and/or “e” for exponent
n Examples: 3.1416 , -7. , 6.02e23 , -5.2e-2
n Note 7 is an integer, 7. is floating point

C
SS

E
23
10

72
31

44

Some Operators

l Binary operators
+ addition
– subtraction
* multiplication
/ division
% remainder (integer)
> greater than
>= greater than or equal
== equal
!= not equal
< less than
<= less than or equals
& bitwise AND

| bitwise OR
^ bitwise XOR
&& logical AND
|| logical OR

l Unary operators
! logical not
~ one’s complement
(invert)

– two’s complement
(negate)

++ increment
(prefix or postfix)

– – decrement
(prefix or postfix)

C
SS

E
23
10

72
31

45

More Operators: Bit-shifting
and assignment

l a << b means a shifted left by b bits
l a >> b means a shifted right by b bits

n What bits are shifted in from the left depends
on whether a is signed or not. Do not rely on
this.

l a = bmeans a is assigned the value of b
l a += b is shorthand for a=a+b
l Similarly -=, *=, /=, %=, &=, |=, ^=, <<=, >>=
l Examples
1 << 5 is 1 * 25 = 32
3 << 4 is 3 * 24 = 48
a += 1 same as ++a

C
SS

E
23
10

72
31

46

Postfix/Prefix
Increment and Decrement

l Example:
int a,b,c,d,e;
a = 4;
b = a++; /* b=a; a=a+1; */
c = ––a; /* a=a–1; c=a; */
d = ++a; /* a=a+1; d=a; */
e = a––; /* e=a; a=a–1; */

l After these statements,
values are
a=4, b=4, c=4, d=5, e=5

Postfix –
change
happens
after the
value used

Prefix –
change
happens
before the
value used

C
SS

E
23
10

72
31

47

Operator Precedence

l Consider a + b * c
l C has strict operator precedence to

disambiguate expressions like the above
l Above expression means a + (b * c)
l Some operators associate right to left, e.g.
 ~ ++ a means ~ (++ a)
l Most associate left to right:
 a - b - c means (a - b) - c not a - (b - c)

C
SS

E
23
10

72
31

4848

Operators Associativity
() [] –> . Left to right
! ~ + – ++ – – & * (unary versions) Right to left
* / % Left to right
+ – Left to right
<< >> Left to right
< <= > >= Left to right
== != Left to right
& (bitwise and) Left to right
^ (bitwise xor) Left to right
| (bitwise or) Left to right
&& (logical and) Left to right
|| (logical or) Left to right
?: Right to left
= *= /= %= += –= &= ^= |= <<= >>= (assignment) Right to left
, Left to right

Operator Precedence and
Associativity

In
cr

ea
si

ng
 P

re
ce

de
nc

e

C
SS

E
23
10

72
31

49

Exercise (1)

l What’s the result of this code?

You have 1½ minutes

C
SS

E
23
10

72
31

50

Control Statements

l if (expression) stmt else stmt
n else clause is optional

l while (expression) stmt
l do stmt while (expression)
l for(init_expr; test_expr; end_expr) stmt
l Note on expressions:

n C interprets any 0 value as false, anything
else as true

n (Java has a specific boolean type)
l stmt can be replaced by multiple statements

enclosed in braces { }

C
SS

E
23
10

72
31

51

Exercise (2)

l What’s the result of this code?

You have 1 minute

C
SS

E
23
10

72
31

52

For Loop Equivalent Code

for (init_expr; test_expr; iter_expr) statement1;

 is equivalent to:

init_expr;
while (test_expr) {
 statement1;
 iter_expr;
}

l Any or all of the expressions can be empty
l Can use comma to separate multiple expressions:
for (i=0, j=0; i<10; i++, j+= 4)

Statement can be replaced
by multiple statements
enclosed in braces

C
SS

E
23
10

72
31

53

Exercise (3)

l What’s the result of this code?

You have 2 minutes

C
SS

E
23
10

72
31

54

Function Return Values

l If no return type is given, C assumes int
l Where no return value is desired, the keyword

void can and should be used
l It is an error to return the wrong type
l Good idea to prototype a function before it is

used
n Especially if used before being defined, or defined in

another file
n Header files (.h files) contain prototypes for library

functions
l A prototype is like a call to a procedure, but

appears outside any procedure
l Has no procedure body

C
SS

E
23
10

72
31

55

Function Prototypes

int get_voltage(void); /* Prototype for 1st proc */
void disp_voltage(int voltage); /* Another prototype */

main() { /* main does not need a prototype */
v = get_voltage();
disp_voltage(v);
}

int get_voltage(void) { /* Actual body for 1st */
 return inp(...); /* procedure */
}
void disp_voltage(int voltage) {
 printf(...);
}

C
SS

E
23
10

72
31

56

Where do variables live?

int a;
float b;
unsigned int max(unsigned int n1,
unsigned int n2,

unsigned int n3)
{
int max;
max=n1;
if(n2 > max) max=n2;
if(n3 > max) {

max=n3;
}
return max;
}

“global” variables are allocated
fixed addresses in memory

function variables are allocated
memory every time the function is
called. Memory is reclaimed at end
of function.

C
SS

E
23
10

72
31

57

Arrays

l Declaring an array
 type variable-name[size];

n Examples:
 char message[16];
 int values[10];
l Accessing elements within an array

 variable-name[index]
n index = 0 … size-1 (called zero-based indexing)
n Examples:

 message[0] = ‘c’; values[9] = values[8]++;

C
SS

E
23
10

72
31

58

Strings

l A string in C is an array of characters
n End of string indicated by null character

Figure to be drawn in class

C
SS

E
23
10

72
31

59

Arrays in Memory

l [To be presented in class]

C
SS

E
23
10

72
31

60

Array Initialisation

l Arrays can be initialised at declaration, e.g.
n int values[9] = {3, 1, 4, 1, 5};

l if variable is global (static) – remaining elements
initialised to 0

l if variable is local (automatic) – remaining elements
are uninitialised

l Size can be omitted if array is initialised, e.g.
n int a[] = {2,3,5,7};

l length is 4 in this case

C
SS

E
23
10

72
31

61

Initialising String Arrays

l [To be presented in class]

C
SS

E
23
10

72
31

62

Pointers

l C has concept of pointers
l Pointer declaration

n type * variable-name;
n variable-name is a pointer to something of given type

l How? – pointer variables store memory addresses
l Example:
 char a, b;
 char *ptr;

 ptr = &a;
 b = *ptr;
l Figures to be drawn in class

Can write these on one line:
char a,b,*ptr;
& is address-of operator –
creates a pointer

* is indirection operator –
returns value pointed to

63

C
SS

E
23
10

72
31

64

Pointers and Arrays

l Array name can be treated as a pointer
to the first element
n i.e. address of first element

l Example:
int a[10];
int *ptr;

/* following statements are same */
ptr = a;
ptr = &a[0];

C
SS

E
23
10

72
31

65

Operations on Pointers

l Addition/subtraction operations on
pointers work in multiples of the size of
the object being pointed to

l Example
int a[10];
int *ptr;

/* following statements are same */
ptr = a+5;
ptr = &a[5];

C
SS

E
23
10

72
31

66

Traversing an Array

l Two examples of clearing an array
l Using index:
float a[10];
int index;
for(index=0; index<10; index++) {

a[index] = 0.0;
}

l Using pointer:
float a[10], *ptr;
for(ptr=a; ptr < a+10; ptr++) {

*ptr = 0.0;
}

Adding one to an array
pointer makes it point
to next element in array

C
SS

E
23
10

72
31

67

Example Function

l Copying a string – can use index or pointer
l [One version to be presented in class, try

writing the other yourself]

C
SS

E
23
10

72
31

68

Example Function

C
SS

E
23
10

72
31

69

Function Arguments

l Arguments passed to functions are copied (passed by
value)

l Changes made within function don’t affect original arguments
l Example:
void swap(int n1, int n2) {
 int tmp;
 tmp = n1;
 n1 = n2;
 n2 = tmp;
}
void main() {
 int a,b;
 a = 2;
 b = 3;
 swap(a,b);
 … /* nothing has happened */
}

This doesn’t apply when
arrays are passed to
functions – since only a
pointer to the array is
passed.

C
SS

E
23
10

72
31

70

Pointers and Functions

l If pass pointers as an argument to function, CAN change value
that is pointed to (called passing by reference)

n (The pointer is copied - not the value pointed to)
l Example:
void swap(int *n1, int *n2) {
 int tmp;
 tmp = *n1;
 *n1 = *n2;
 *n2 = tmp;
}
void main() {
 int a,b;
 a = 2;
 b = 3;
 swap(&a,&b);
 … /* a and b will be swapped */
}

C
SS

E
23
10

72
31

71

Structures

l Like a class or record – groups several elements (called
members or components) together:

/* Structure definition */
struct Time {
 int hour; /* 0 - 23 */
 int minute; /* 0 - 59 */
 int second; /* 0 - 59 */
};
struct Time time; /* variable decl. */

l Members can be accessed using . (selection) operator
time.hour = 11;
minutes = time.hour*60 + time.minute;

This is the type This is the variable name

C
SS

E
23
10

72
31

72

typedef

l Can define new names for types
n Often used with structures, but can be used for

any type

typedef struct S { int a; int b;} s1type;
n s1type is exactly the same as struct S

typedef int boolean;
n Defines “boolean” to be a synonym for int

S can be omitted
from definition
(have to use
s1type name)

C
SS

E
23
10

72
31

73

Structures and Pointers

l Pointers can point to structures
l Indirection operator ->
l [Code examples to be given in class]

C
SS

E
23
10

72
31

74

Structures and Pointers

l Pointers can point to structures
l Indirection operator ->
l [Code examples to be given in class]

C
SS

E
23
10

72
31

75

Things To Do This Week

l Learn a UNIX text editor
n vi
n Emacs
n nano

l Learn C
n Do C programming tutorials
n Work on C programming exercises

