2310
7231

Computer
Systems
Principles +
Programming

CSSE

Week 1.1

Introduction

School of Information Technology and Electrical Engineering
The University of Queensland

2310
7231

Welcome

CSSE

- CSSE2310 / CSSE7321

 Computer Systems Principles and
Programming

* Teaching Staff
* Dr Joel Fenwick
* A/Prof Peter Sutton

* Tutors (Adam, Nathaniel, Pat, Richard,
Simon, Thomas)

* Rule 0: If you have questions, then ask.
2

2310
7231

What’'s This Course All
About?

CSSE

B
*Exposure to UNIX operating system
* Shell commands
*Underlying Principles of
* Operating Systems
* Computer Networks
*Systems Programming C

*You will become more effective programmers
and system designers by having knowledge of
the underlying systems

w

2310
7231

Resources

CSSE

* Course website
= http://courses.itee.uqg.edu.au/csse2310/2012s1

= Lecture Slides
® Usually posted just in advance of lectures

" Pracs
— Programming problems and exercises

* Notices
= Distributed via newsgroup, subject site
= by email if urgent

SN

2310
7231

Communication

CSSE

* Newsgroup: uqg.itee.csse2310 - Best
method to communicate with staff and other

students.

* [less good] MyNewsgroups on my.uq

* Reader software: eg mozilla thunderbird
* Joel:

* Email: joelfenwick@ug.edu.au

* Anonymous feedback link on the subject page.

* If I don't know who you are, then I can't
respond.
* Very little on the net is truly anonymous

5

2310
7231

Course Profile

CSSE

*Describes
= The course in detail
= What you can expect
= What we expect of you
‘You should obtain and read the
course profile
‘Now for some of the details ...

(o))

2310
7231

Assumed Background

CSSE

*You must know something about programming

*‘The more comfortable you are with programming in general,
the easier you will find this course

*You should also have ...
... Some knowledge of computer systems

... Knowledge of binary representations (2’s complement etc)
... Knowledge of binary operations (AND, OR, XOR, ...)

... Ideally, some prior exposure to C

N

2310
7231

Other Courses

CSSE

* CSSE2310 leads
to more detailed

CSSE2310

Operating Systems
Architecture

courses in the area /
of computer systems ,’ COMP3301
and networks /
/
/’ COMS3200
p Computer
Networks I
/ Y
y 2
COSC3500 cOMS3010
Embedded COMS3000
Systems

2310
7231

Textbooks

CSSE

Wi * Glass & Ables
- Programmers = UNIX for

L and Users

Programmers and
Users
b = Linux for
UNUXEW{;‘;:"““ Programmers and
Users

Covers most
aspects of the

course
9
(u,g Textbooks (cont.)
)
O
* Harbison and Steele -
= C: A Reference Manual (5th
edition) A Reference Manual
= Highly recommended as a I O LILON

reference on C
* Kernighan and

R i tC h i e SECOND EDITION

= The C el
Programming cm
Language
(2nd ed, 1988) RO AR AMBITNG

= Does not cover C99 e

Samuel P. Harbison III * Guy L. Steele Jr.

10

2310
7231

Assessment

CSSE

* Assignments (100 marks total)
= Four Assignments
® Equal weight (25 marks) but not equal difficulty
® Al - Simple C Programming
* A2 - debugging
® A3 and A4 - UNIX systems programming in C
 Exams (100 marks total)
= Mid-semester exam (in Friday lecture, week 7)
® Multiple choice, open book
= Final exam
® Written answers, open book
= Overall exam mark is better of
® 30% mid-semester + 70% final
®* 15% mid-semester + 85% final

= Exams cover theory and programming

2310
7231

Grade determination

CSSE

* Final mark (out of 100) determined as
geometric mean of assignment and exam
marks (and then rounded to nearest integer)

Final = \/Assignmentma,,kx Exam,, .

mark

* No minimum requirements on exam or
assignment marks.

* Grade determined from final mark

7 =38510 100 4 =50 to 64
6=75to 84 3=451049
5=65to 74 2=20to 44

= CSSE7321 has different cutoffs

2310
7231

CSSE

2310
7231

CSSE

Late Submissions

Assignments are all due electronically

* 1,3,4 using subversion
* Submission by 11pm on due date
* 20% per 24hrs (or part thereof) late penalty

* No submissions accepted more than 96 hours after the
deadline under any circumstances.

Read course profile for the fine print!

Plagiarism and Collusion

All assignments are individual

= All submitted code must be your work

= Using code provided on CSSE2310 website is acceptable
= Use of any other published code is unacceptable

ALL submitted code will be subject to plagiarism
and collusion detection

Don’t copy or look at code from other students or allow
your code to be copied or seen - this is cheating
= Misconduct proceedings will be initiated if plagiarism
and/or collusion is found

You are encouraged to discuss assignments but this
should not include sharing code

2310
7231

Plagiarism and Collusion

SCOI‘lt. l

CSSE

* Assessment can serve (at least) two
purposes:
= Feedback to you on your learning
= Measuring your performance for the
purpose of generating a grade
* Plagiarism and/or collusion
compromises both of these

2310
7231

What to do help you learn

CSSE

* Lectures
* Tutorials (enroll if you have not already)

* Assignments (Not just testing what you've
learned elsewhere.)

* You will gain a better understanding of by doing the
assignments.

» Lectures do not give detailed instructions for
assignments.

 We don't discuss some problems until people ask
about them.

* Private study

2310
7231

What to expect in pracs

CSSE

* Exercises early in weeks.
* Eg intro to unix

* Teaching in some weeks.
* Eg make

* Work on assignments, get help.

* You may attend as many tutorials as you
wish but enrolled students have priority.

2310
7231

w What to expect in lectures
N
O
Stand and stretch breaks half way through each hour
(approximately)
10 minute break in the middle of Tuesday lecture
Stories!
* Some practical examples, tool demos, explanations
Take notes!

= Lecture slides don’t capture everything

* Lectures will generally cover higher level concepts
(except for weeks 2-4)

* Mid-semester exam in Friday lecture slot in week 7

2310
7231

Things I may do during lectures

LLl
)
7))
O ———
Ask questions
* “Why?” - you may need to justify
answers.
. I don't expect people to be able to
answer all questions immediately.
* May need to move quickly to give
someone else a chance.
Dealing with some answers may require
material we haven't covered.
19
(E}J; Things I may do during lectures
7))
o ————

Employ comical exaggeration

Concepts are abstract
Computers are fast

Hard to differentiate between good and
bad solutions

2310
7231

What we expect from you...

CSSE

Attendance at lectures
= You may be disadvantaged if you don’t attend
- Seek help if you’'re having trouble
= Don't leave it too late
 Hard work
= Ask students from previous years.
‘Feedback and ideas (anonymous if you like)
= What can we improve?
» Especially if some aspect of the course is causing you
distress.
= What do you want to learn about?
* Course is pretty full so no major changes.

2310
7231

Facilities

CSSE

Pracs in 78-{108, 208, 116, 336}
= PC lab, from which you can remotely access LINUX
server
= After hours access available
® You'll need an access card - see the Faculty office
= Login using UQ password
Server: moss.labs.eait.uq.edu.au
= Runs Linux
= Access from lab PCs possible, via
® ssh (command line)
® X-window (graphical)

= Remote access possible
® ssh to moss.labs.eait.uq.edu.au
® See http://studenthelp.itee.uqg.edu.au/remote/

2310
7231

Using your own hardware
(optional!)

s e
Connect to moss via ssh (putty)

CSSE

Work on your own computer. At your own risk.
Always test on moss! If it does not work on moss
it does not work!

If your computer is running:

— Linux - Make sure you have gcc, make and
svn installed.

— MacOSX - You will need to install the X-
Code from your OS cd/app store.

— Windows - consider installing linux.

2310
7231

Linux at home

CSSE

e —
* If you haven't done so already. This is a good

opportunity to try linux on your own hardware.

— Lots of people to answer questions.

— Can work without connecting to moss.
Always test on moss.
* While we can answer questions we do not provide
support for install problems.

— We probably won't debug on your
hardware.

— If it eats your pets and destroys your
computer - not our fault! 24

2310
7231

(L;J) Install options
%)
O - ——
* Virtual machine: A program simulates a
whole computer on which you can install
and run an OS.
— VirtualBox, vmware, parallels
* Dual boot: Choose between a number of
OS at boot time. (Need to reboot to
switch).
— Wubi - windows installer for Ubuntu
— Debian, Ubuntu, many others
* Use your isp's mirrors where possible
%) EZE8
O Oha

Week 1.2

C-Introduction

School of Information Technology and Electrical Engineering
The University of Queensland

2310
7231

Pracs

CSSE

* Enrol in two sessions (one P session and one C session) per
week.

* Only P sessions run in week 1.

* Over the next week or so [this will take more than tute time]:
* Unix tutorial exercise

 C programming tutorials

* C programming exercises

2310
7231

Lecture Outline

CSSE

* UNIX editors
* Building C programs
* C Programming Language
= Basic structure of a program
Quick overview of some features
Arrays
Pointers
Structures
Preprocessor

2310
7231

UNIX Editors

CSSE

* It is highly recommended that you
learn to use a UNIX text editor

* Two popular editors, suitable for writing
programs are
= vi (or vim - “vi improved”)
" emacs

* See pages 57 to 75 of Glass & Ables for
a brief introduction to both

* More details, including links to tutorials
are on the course website

2310
7231

Building C programs

CSSE

* C program files are typically named
<name>.cC
i.e., lowercase .c extension

* Programs are compiled and linked to
produce an executable

* gcc command can be used for both
compilation and linking
= gcc (used to be GNU C Compiler, now
GNU Compiler Collection) is a free
compiler collection - available for many

systems
30

2310
7231

Hello World

CSSE

31

2310
7231

Compilation and Linking

CSSE

* Explanation in class

32

2310
7231

Use of gcc

CSSE

- Compilation (production of object code)
" gcc —c name.cC
= -c argument means compile but do not link
= Example above will produce file name.o

- Compilation and Linking in one step

" gcc name.c

® Links with standard C library and produces
executable named a.out

" gcc —o executable-name name.c
® -0 argument specifies the name of the output file

33

2310
7231

Use of gcc (cont.)

CSSE

* Linking
" gcc —o executable-name name.o

* Can give multiple filenames as
arguments, e.g.

" gcc —o executable-name namel.c namel.c name3 .o
® Compiles and links as required

« Sometimes need to link with the maths
library (-Im) if program uses maths
functions

" gcc —o executable-name namel.c name2.c .. -1lm

34

2310
7231

CSSE

2310
7231

CSSE

compilation‘linking?

Why have separate

Large programs are made up of multiple
source files

If change one file, shouldn’t have to
recompile all the others, just

= recompile the one that changed

= link the object files to produced an executable
Recompiling everything can be a slow process

The make command (and Makefiles) provide
an automated mechanism to only recompile
files that change

= More details later

C Programming Language

* In this course we expect you to...

= be able to write C programs from
scratch

= understand the meaning of C
programs

= be able to modify C programs

= understand how C programs use
memory

* Lectures can’t teach programming
* You'll need to practice

2310
7231

C Program - Basic Structure

CSSE

* Main function name must be main
= This function is executed when program starts

Blocks of code enclosed by braces { }

C statements must end with a semicolon ;
C statements are case sensitive

" variable is not the same as Variable

Comments are within /* ... */

= // accepted by newer compilers (C99)
® Comment is from // to end of line
¢ Initially, we'll use /* ... */ only

2310
7231

Basic Structure (cont.)

CSSE

* C program consists of
= Declarations
= Function definitions
* Function definitions have
= Variable declarations
= Statements

2310
7231

Declaring Variables

CSSE

* Declaration
" type-name variable-name, variable-name ..;

Single byte Integers (size is machine
. Examples / __ | dependent) Integers can be
« char c: unsigned or signed (two’s
. <« complement).
" int day;

" unsigned int count; . . .
- float] ¥~ TWo single precision floating
oat expense, income; point numbers

* double pPivt

A double precision floating point number

* char, int, float, double are among the data types
supported by C

* C does not have a separate boolean type (Java does)
C99 has bool. You will need to #include<stdbool.}13>9

2310
7231

Function Definitions

CSSE

|What type is returned by the function, e.g. int or void

Name of the function, e.g. main

Argument (parameter) declaration,
L e.g. int a, float b

return-type function-name (arg declaration)

{

variable-declarations;

statements;

} Variables used ONLY
within the function

The code which actually
does stuff 40

2310
7231

CSSE

/*

Function Example

Return the average of two integers
(result will be rounded towards 0)

*/

int average(int a, int b) {

int avge;

%avge _ (a+b) /2 ; Statements

return avge;

}

2310
7231

CSSE

These are expressions. Outer
expression is a statement.

The function returns a
result when finished

C Constants

* Character constants
= Use single quotes, e.qg. 'a', 'b', '1' etc
= Some special characters - backslash escaped
°* '\n' = newline, '\"" = single quote, '\t' = tab, "\\' = backslash

- String constants

= Use double quotes (can include backslash escapes)
e.g. "abc \n \" hello\t"

- Integer constants

= Decimal - e.g. 3, -27,65535, +5
= Hexadecimal (leading 0x), e.g. Ox5F , OxFFFF , OxDEADBEEF
= Octal (leading 0), e.g. 0377 (= 255 decimal)

2310
7231

C Constants

CSSE

Boolean (can always use integers)
[c99] bool, true, false
* Floating point constants
= Include decimal point (.) and/or “e” for exponent
= Examples: 3.1416 , -7., 6.02e23 , -5.2e-2
Note 7 is an integer, 7. is floating point

43
L Some Operators
0p]
@)
* Binary operators | bitwise OR
+ addition N bitwise XOR
- subtraction && logical AND
* multiplication || logical OR
/ division
% remainder (integer) * Unary operators
> greater than ! logical not
>= greater than or equal ~ one’s complement
== equal (invert)
= not equal _(negatetsNO,s complement
< less than :
++ increment
<= less than or equals (prefix or postfix)
& bitwise AND — - decrement

(prefix or postfix)

44

2310
7231

More Operators: Bit-shifting

and assignment

<< b means a shifted left by b bits

>> b means a shifted right by b bits

What bits are shifted in from the left depends
or? whether a is signed or not. Do not rely on
this.

° a = bmeans a is assigned the value of b

° a += b is shorthand for a=a+b

* Similarly -=, *=, /=, $=, &=, |=, 2=, <<=, >>=
* Examples

1 << 5 isl1* 25 =32

3<< 4 is3* 24 =48

a += 1 sSame as ++a

CSSE

« P

2310
7231

m Postfix/Prefix
9 Increment and Decrement
e —— S —
Postfix —
° Example: change
int a,b,c,d,e; gftgffhnj
a = 4; value used
b = a++; /*b=a; a=a+1; */
c = ——a; /*a=a-1; c=a; */
d = ++a; /* a=a+1l; d=a; */
e = a—; /*e=a;, a=a-1;%*/
Prefix —
* After these statements, change
happens
values are before the
a=4, b=4, c=4, d=5, e=5 value used

46

CSSE

LU

0p] - - =

% Associativity
Operators
() I[l->.
'~ + - +4+4 - - & * (unary versions)
* [0 ©
+ - -
<< >> %
< <= > >= §
== I= p
& (bitwise and) '%
A (bitwise xor) g
| (bitwise or) =
&& (logical and)
| (logical or)
?:
= *= /= %= += -= &= = |= <<= >>= (assignment)

2310

2310

7231

* Considera + b * ¢

C has strict operator precedence to

Operator Precedence

disambiguate expressions like the above

Above expression means
Some operators associate right to left, e.qg.

~ ++4+ a means ~ (++ a)

Most associate left to right:

a+ (b*c)

a-b-c means (a-b)-c nota-(b-c)

7231

~

Operator Precedence and

Associativity

Left to right
Right to left
Left to right
Left to right
Left to right
Left to right
Left to right
Left to right
Left to right
Left to right
Left to right
Left to right
Right to left
Right to left
Left to right

2310
7231

Exercise (1)

CSSE

 What's the result of this code?

You have 12 minutes J

2310
7231

Control Statements

CSSE

if (expression) stmt else stmt

" else clause is optional

° while (expression) stmt

°* do stmt while (expression)

°* for(init expr; test expr; end expr) stmt

* Note on expressions:

= C interprets any 0 value as false, anything
else as true

= (Java has a specific boolean type)

* stmt can be replaced by multiple statements

enclosed in braces { } 50

2310
7231

Exercise (2)

e e ————
 What's the result of this code?

CSSE

You have 1 minute l
o

2310
7231

For Loop Equivalent Code

CSSE

for (init expr; test expr; iter expr) 7tatement1;

is equivalent to:
. Statement can be replaced

by multiple statements
init expr; enclosed in braces

while (test expr) ({

statementl;

iter expr;

* Any or all of the expressions can be empty

* Can use comma to separate multiple expressions:
for (i=0, j=0; i<10; i++, j+= 4)
52

2310
7231

% Exercise (3)
O —————

* What's the result of this code?

You have 2 minutes =
w Function Return Values
N
@)

If no return type is given, C assumes int

Where no return value is desired, the keyword
void can and should be used

It is an error to return the wrong type

Good idea to prototype a function before it is
used

= Especially if used before being defined, or defined in
another file

= Header files (.h files) contain prototypes for library
functions

A prototype is like a call to a procedure, but

appears outside any procedure

54
Has no nrocedure bodv

2310
7231

CSSE

2310
7231

CSSE

Function Prototypes

int get voltage (void); /* Prototype for 1lst proc */
void disp voltage (int voltage); /* Another prototype */

main () { /* main does not need a prototype */
v = get voltage();
disp voltage (V) ;

}

int get voltage (void) { /* Actual body for 1st */
return inp(...); /* procedure */

}

void disp voltage (int voltage) {

printf(...);
55

Where do variables live?

: “global” variables are allocated
int a; < fixed addresses in memor
float b; y

unsigned int max(unsigned int nl,
unsigned int n2,
unsigned int n3)

{int max ; T function variables are allocated
memory every time the function is

max=nl; called. Memory is reclaimed at end

if(n2 > max) max=n2; of function.

if (n3 > max) {

max=n3;

}

return max;

}

56

2310
7231

Arrays

CSSE

* Declaring an array
type variable-name[size];

= Examples:
char message[16];

int values|[10];

* Accessing elements within an array
variable—-name[index]

= index = 0 ... size-1 (called zero-based indexing)

= Examples:
message[0] = ‘c¢’; values[9] = values[8]++;

S7

2310
7231

Strings

CSSE

* A string in C is an array of characters
= End of string indicated by null character

Figure to be drawn in class

2310
7231

Arrays in Memory

CSSE

[To be presented in class]

2310
7231

Array Initialisation

CSSE

* Arrays can be initialised at declaration, e.qg.

* int values|[9] = {3, 1, 4, 1, 5};
e if variable is global (static) - remaining elements
initialised to O
e if variable is local (automatic) - remaining elements
are uninitialised

* Size can be omitted if array is initialised, e.q.

“ int al[] = {2,3,5,7};
® length is 4 in this case

2310
7231

Initialising String Arrays

CSSE

[To be presented in class]

61

2310
7231

Pointers

CSSE

* C has concept of pointers
* Pointer declaration
" type * variable-name;
= variable-name is a pointer to something of given type
® How? — pointer variables store memory addresses

* Example:
char a, b;

<= | Can write these on one line:
char a,b,*ptr;

char *ptr;
& is address-of operator —
creates a pointer

tr = &a; . .
P * is indirection operator —

b = *ptr; returns value pointed to

* Figures to be drawn in class
62

63

2310
7231

Pointers and Arrays

CSSE

* Array name can be treated as a pointer
to the first element
= i.e. address of first element
* Example:

int a[l1l0];
int *ptr;

/* following statements are same */
ptr = a;
ptr = &a[0];

2310
7231

w Operations on Pointers
S
* Addition/subtraction operations on
pointers work in multiples of the size of
the object being pointed to
* Example
int a[l0];
int *ptr;
/* following statements are same */
ptr = a+5;
ptr = &al[5];
65
% Traversing an Array
O ——————

* Two examples of clearing an array

* Using index:

float a[l10];

int index;

for (index=0; index<10; index++) {
a[index] = 0.0;

}

Adding one to an array
pointer makes it point
to next element in array

* Using pointer: /

float a[l10], *ptr;

for (ptr=a; ptr < a+l10; ptr++) ({
*ptr = 0.0;

} 66

2310
7231

Example Function

CSSE

* Copying a string — can use index or pointer

* [One version to be presented in class, try
writing the other yourself]

2310
7231

Example Function

CSSE

8

2310
7231

CSSE

value)

Function Arguments

Arguments passed to functions are copied (passed by

* Changes made within function don’t affect original arguments

* Example:

void swap(int nl, int n2) {

int tmp;
tmp = nl;
nl n2;
n2 tmp;

}

void main() {
int a,b;
a=2;
b = 3;
swap (a,b) ;

.. /* nothing has happened */

[w—

2310
7231

CSSE

N\

This doesn’t apply when
arrays are passed to
functions - since only a
pointer to the array is
passed.

Pointers and Functions

« If pass pointers as an argument to function, CAN change value
that is pointed to (called passing by reference)

= (The pointer is copied - not the value pointed to)

* Example:

void swap(int *nl, int *n2) ({

int tmp;

tmp *nl;
*nl *n2;
*n2

}

void main () {

int a,b;
a=2;
b = 3;

swap (&a, &b) ;

.. /* a and b will be

[N—

swapped */

2310
7231

Structures

CSSE

* Like a class or record - groups several elements (called
members or components) together:

/* Structure definition */
struct Time {
int hour; /* 0 - 23 */
int minute; /* 0 - 59 */
int second; /* 0 - 59 */
};

Struct Timeltime<\<:~variable decl. */
This is the type This is the variable name

* Members can be accessed using . (selection) operator

time.hour = 11;
minutes = time.hour*60 + time.minute;

2310
7231

typedef

CSSE

- ———— R ——
* Can define new names for types
= Often used with structures, but can be used for
any type

S can be omitted

typedef struct S from definition
int a; (have to use
sltype hame)

int b;

} sltype;
= sltype is exactly the same as struct S

typedef int boolean;

= Defines “boolean” to be a synonym for int
72

2310
7231

Structures and Pointers

CSSE

* Pointers can point to structures
* Indirection operator ->
* [Code examples to be given in class]

2310
7231

Structures and Pointers

CSSE

* Pointers can point to structures
* Indirection operator ->
* [Code examples to be given in class]

2310
7231

Things To Do This Week

CSSE

Learn a UNIX text editor

" Vi

= Emacs

* nano

* Learn C

= Do C programming tutorials

= Work on C programming exercises

