
School of Information Technology and Electrical Engineering
The University of Queensland

C
SS

E
23
10

72
31

C
om

pu
te

r
S

ys
te

m
s

P
rin

ci
pl

es
 +

P

ro
gr

am
m

in
g

Week 1.1

Introduction

C
SS

E
23
10

72
31

2

Welcome

 CSSE2310 / CSSE7321
● Computer Systems Principles and

Programming

● Teaching Staff
● Dr Joel Fenwick
● A/Prof Peter Sutton
● Tutors (Adam, Nathaniel, Pat, Richard,

Simon, Thomas)

● Rule 0: If you have questions, then ask.

C
SS

E
23
10

72
31

3

What’s This Course All
About?

●Exposure to UNIX operating system
● Shell commands

●Underlying Principles of
● Operating Systems
● Computer Networks

●Systems Programming C

●You will become more effective programmers
and system designers by having knowledge of
the underlying systems

C
SS

E
23
10

72
31

4

Resources

 Course website
 http://courses.itee.uq.edu.au/csse2310/2012s1
 Lecture Slides

 Usually posted just in advance of lectures
 Pracs
– Programming problems and exercises

 Notices
 Distributed via newsgroup, subject site
 by email if urgent

C
SS

E
23
10

72
31

5

Communication

 Newsgroup: uq.itee.csse2310 – Best
method to communicate with staff and other
students.

● [less good] MyNewsgroups on my.uq
● Reader software: eg mozilla thunderbird

● Joel:
● Email: joelfenwick@uq.edu.au
● Anonymous feedback link on the subject page.

● If I don't know who you are, then I can't
respond.

● Very little on the net is truly anonymous

C
SS

E
23
10

72
31

6

Course Profile

●Describes
 The course in detail
 What you can expect
 What we expect of you

●You should obtain and read the
course profile
●Now for some of the details …

C
SS

E
23
10

72
31

7

Assumed Background

●You must know something about programming

●The more comfortable you are with programming in general,
the easier you will find this course
●You should also have …
… Some knowledge of computer systems

… Knowledge of binary representations (2’s complement etc)

… Knowledge of binary operations (AND, OR, XOR, …)

… Ideally, some prior exposure to C

C
SS

E
23
10

72
31

8

Other Courses

 CSSE2310 leads
to more detailed
courses in the area
of computer systems
and networks

CSSE2310

COMP3301

COMS3200

Operating Systems
Architecture

Computer
Networks I

COSC3500
COMS3000

Info.
SecurityCOMS3010

Embedded
Systems

C
SS

E
23
10

72
31

9

Textbooks

 Glass & Ables
 UNIX for

Programmers and
Users

 Linux for
Programmers and
Users

 Covers most
aspects of the
course

C
SS

E
23
10

72
31

10

Textbooks (cont.)

 Harbison and Steele -
 C: A Reference Manual (5th

edition)
 Highly recommended as a

reference on C
 Kernighan and

Ritchie
 The C

Programming
Language
(2nd ed, 1988)

 Does not cover C99

OR

C
SS

E
23
10

72
31

11

Assessment

 Assignments (100 marks total)
 Four Assignments

 Equal weight (25 marks) but not equal difficulty
 A1 – Simple C Programming
 A2 – debugging
 A3 and A4 – UNIX systems programming in C

 Exams (100 marks total)
 Mid-semester exam (in Friday lecture, week 7)

 Multiple choice, open book
 Final exam

 Written answers, open book
 Overall exam mark is better of

 30% mid-semester + 70% final
 15% mid-semester + 85% final

 Exams cover theory and programming

C
SS

E
23
10

72
31

12

Grade determination

 Final mark (out of 100) determined as
geometric mean of assignment and exam
marks (and then rounded to nearest integer)

 No minimum requirements on exam or
assignment marks.

 Grade determined from final mark

 CSSE7321 has different cutoffs

Finalmark=Assignmentmark×Exammark

7 = 85 to 100 4 = 50 to 64
6 = 75 to 84 3 = 45 to 49
5 = 65 to 74 2 = 20 to 44

C
SS

E
23
10

72
31

13

Late Submissions

 Assignments are all due electronically
 1,3,4 using subversion
 Submission by 11pm on due date
 20% per 24hrs (or part thereof) late penalty
 No submissions accepted more than 96 hours after the

deadline under any circumstances.

 Read course profile for the fine print!

C
SS

E
23
10

72
31

14

Plagiarism and Collusion

 All assignments are individual
 All submitted code must be your work
 Using code provided on CSSE2310 website is acceptable
 Use of any other published code is unacceptable

 ALL submitted code will be subject to plagiarism
and collusion detection

 Don’t copy or look at code from other students or allow
your code to be copied or seen – this is cheating

 Misconduct proceedings will be initiated if plagiarism
and/or collusion is found

 You are encouraged to discuss assignments but this
should not include sharing code

C
SS

E
23
10

72
31

15

Plagiarism and Collusion
(cont.)

 Assessment can serve (at least) two
purposes:
 Feedback to you on your learning
 Measuring your performance for the

purpose of generating a grade
 Plagiarism and/or collusion

compromises both of these

C
SS

E
23
10

72
31

16

What to do help you learn

 Lectures
 Tutorials (enroll if you have not already)
 Assignments (Not just testing what you've

learned elsewhere.)
• You will gain a better understanding of by doing the

assignments.
• Lectures do not give detailed instructions for

assignments.
• We don't discuss some problems until people ask

about them.
 Private study

C
SS

E
23
10

72
31

17

What to expect in pracs

 Exercises early in weeks.
 Eg intro to unix

 Teaching in some weeks.
 Eg make

 Work on assignments, get help.
 You may attend as many tutorials as you

wish but enrolled students have priority.

C
SS

E
23
10

72
31

18

What to expect in lectures

 Stand and stretch breaks half way through each hour
(approximately)

 10 minute break in the middle of Tuesday lecture
 Stories!
 Some practical examples, tool demos, explanations
 Take notes!

 Lecture slides don’t capture everything
 Lectures will generally cover higher level concepts

(except for weeks 2-4)
 Mid-semester exam in Friday lecture slot in week 7

C
SS

E
23
10

72
31

19

Things I may do during lectures

Ask questions
 “Why?” - you may need to justify

answers.
 I don't expect people to be able to

answer all questions immediately.
 May need to move quickly to give

someone else a chance.
 Dealing with some answers may require

material we haven't covered.

C
SS

E
23
10

72
31

20

Things I may do during lectures

Employ comical exaggeration
• Concepts are abstract
• Computers are fast
• Hard to differentiate between good and

bad solutions

C
SS

E
23
10

72
31

21

What we expect from you…

 Attendance at lectures
 You may be disadvantaged if you don’t attend

 Seek help if you’re having trouble
 Don’t leave it too late

 Hard work
 Ask students from previous years.

•Feedback and ideas (anonymous if you like)
 What can we improve?

• Especially if some aspect of the course is causing you
distress.

 What do you want to learn about?
• Course is pretty full so no major changes.

C
SS

E
23
10

72
31

22

Facilities

 Pracs in 78-{108, 208, 116, 336}
 PC lab, from which you can remotely access LINUX

server
 After hours access available

 You’ll need an access card – see the Faculty office
 Login using UQ password

 Server: moss.labs.eait.uq.edu.au
 Runs Linux
 Access from lab PCs possible, via

 ssh (command line)
 X-window (graphical)

 Remote access possible
 ssh to moss.labs.eait.uq.edu.au
 See http://studenthelp.itee.uq.edu.au/remote/

C
SS

E
23
10

72
31

23

Using your own hardware
(optional!)

 Connect to moss via ssh (putty)
 Work on your own computer. At your own risk.

Always test on moss! If it does not work on moss
it does not work!

 If your computer is running:

– Linux – Make sure you have gcc, make and
svn installed.

– MacOSX – You will need to install the X-
Code from your OS cd/app store.

– Windows – consider installing linux.

C
SS

E
23
10

72
31

24

Linux at home

 If you haven't done so already. This is a good
opportunity to try linux on your own hardware.

– Lots of people to answer questions.
– Can work without connecting to moss.

• Always test on moss.
 While we can answer questions we do not provide

support for install problems.

– We probably won't debug on your
hardware.

– If it eats your pets and destroys your
computer – not our fault!

C
SS

E
23
10

72
31

25

Install options

 Virtual machine: A program simulates a
whole computer on which you can install
and run an OS.

– VirtualBox, vmware, parallels
 Dual boot: Choose between a number of

OS at boot time. (Need to reboot to
switch).

– Wubi – windows installer for Ubuntu

– Debian, Ubuntu, many others
 Use your isp's mirrors where possible

School of Information Technology and Electrical Engineering
The University of Queensland

C
SS

E
23
10

72
31

C
om

pu
te

r
S

ys
te

m
s

P
rin

ci
pl

es
 +

P

ro
gr

am
m

in
g

Week 1.2

C-Introduction

C
SS

E
23
10

72
31

27

Pracs

l Enrol in two sessions (one P session and one C session) per
week.

l Only P sessions run in week 1.
l Over the next week or so [this will take more than tute time]:

● Unix tutorial exercise
● C programming tutorials
● C programming exercises

C
SS

E
23
10

72
31

28

Lecture Outline

l UNIX editors
l Building C programs
l C Programming Language

n Basic structure of a program
n Quick overview of some features
n Arrays
n Pointers
n Structures
n Preprocessor

C
SS

E
23
10

72
31

29

UNIX Editors

l It is highly recommended that you
learn to use a UNIX text editor

l Two popular editors, suitable for writing
programs are
n vi (or vim – “vi improved”)
n emacs

l See pages 57 to 75 of Glass & Ables for
a brief introduction to both

l More details, including links to tutorials
are on the course website

C
SS

E
23
10

72
31

30

Building C programs

l C program files are typically named
<name>.c

i.e., lowercase .c extension
l Programs are compiled and linked to

produce an executable
l gcc command can be used for both

compilation and linking
n gcc (used to be GNU C Compiler, now

GNU Compiler Collection) is a free
compiler collection – available for many
systems

C
SS

E
23
10

72
31

31

Hello World
C

SS
E

23
10

72
31

32

Compilation and Linking

l Explanation in class

C
SS

E
23
10

72
31

33

Use of gcc

l Compilation (production of object code)
n gcc –c name.c
n -c argument means compile but do not link
n Example above will produce file name.o

l Compilation and Linking in one step
n gcc name.c

l Links with standard C library and produces
executable named a.out

n gcc –o executable-name name.c
l -o argument specifies the name of the output file

C
SS

E
23
10

72
31

34

Use of gcc (cont.)

l Linking
n gcc –o executable-name name.o

l Can give multiple filenames as
arguments, e.g.
n gcc –o executable-name name1.c name2.c name3.o

l Compiles and links as required
l Sometimes need to link with the maths

library (-lm) if program uses maths
functions
n gcc –o executable-name name1.c name2.c … -lm

C
SS

E
23
10

72
31

35

Why have separate
compilation/linking?

l Large programs are made up of multiple
source files

l If change one file, shouldn’t have to
recompile all the others, just
n recompile the one that changed
n link the object files to produced an executable

l Recompiling everything can be a slow process
l The make command (and Makefiles) provide

an automated mechanism to only recompile
files that change
n More details later

C
SS

E
23
10

72
31

36

C Programming Language

l In this course we expect you to…
n be able to write C programs from

scratch
n understand the meaning of C

programs
n be able to modify C programs
n understand how C programs use

memory
l Lectures can’t teach programming
l You’ll need to practice

C
SS

E
23
10

72
31

37

C Program – Basic Structure

l Main function name must be main
n This function is executed when program starts

l Blocks of code enclosed by braces { }
l C statements must end with a semicolon ;
l C statements are case sensitive

n variable is not the same as Variable
l Comments are within /* … */

n // accepted by newer compilers (C99)
l Comment is from // to end of line
l Initially, we’ll use /* … */ only

C
SS

E
23
10

72
31

38

Basic Structure (cont.)

l C program consists of
n Declarations
n Function definitions

l Function definitions have
n Variable declarations
n Statements

C
SS

E
23
10

72
31

39

Declaring Variables

l Declaration
n type-name variable-name, variable-name …;

l Examples
n char c;
n int day;
n unsigned int count;
n float expense, income;
n double pi;

l char, int, float, double are among the data types
supported by C

l C does not have a separate boolean type (Java does)
C99 has bool. You will need to #include<stdbool.h>

Single byte

Two single precision floating
point numbers

A double precision floating point number

Integers (size is machine
dependent) Integers can be
unsigned or signed (two’s
complement).

C
SS

E
23
10

72
31

40

Function Definitions

 return-type function-name (arg declaration)
{
 variable-declarations;
 …
 statements;
}

What type is returned by the function, e.g. int or void
Name of the function, e.g. main

Argument (parameter) declaration,
e.g. int a, float b

Variables used ONLY
within the function

The code which actually
does stuff

C
SS

E
23
10

72
31

41

Function Example

/*
Return the average of two integers
 (result will be rounded towards 0)
*/
int average(int a, int b) {
int avge;
avge = (a+b)/2 ;
return avge;
} These are expressions. Outer

expression is a statement.

The function returns a
result when finished

Statements

C
SS

E
23
10

72
31

42

C Constants

l Character constants
n Use single quotes, e.g. 'a', 'b', '1' etc
n Some special characters – backslash escaped

l '\n' = newline, '\'' = single quote, '\t' = tab, '\\' = backslash
l String constants

n Use double quotes (can include backslash escapes)
e.g. "abc \n \" hello\t"

l Integer constants
n Decimal – e.g. 3 , -27 , 65535 , +5
n Hexadecimal (leading 0x), e.g. 0x5F , 0xFFFF , 0xDEADBEEF
n Octal (leading 0), e.g. 0377 (= 255 decimal)

C
SS

E
23
10

72
31

43

C Constants

l Boolean (can always use integers)
n [c99] bool, true, false

l Floating point constants
n Include decimal point (.) and/or “e” for exponent
n Examples: 3.1416 , -7. , 6.02e23 , -5.2e-2
n Note 7 is an integer, 7. is floating point

C
SS

E
23
10

72
31

44

Some Operators

l Binary operators
+ addition
– subtraction
* multiplication
/ division
% remainder (integer)
> greater than
>= greater than or equal
== equal
!= not equal
< less than
<= less than or equals
& bitwise AND

| bitwise OR
^ bitwise XOR
&& logical AND
|| logical OR

l Unary operators
! logical not
~ one’s complement
(invert)

– two’s complement
(negate)

++ increment
(prefix or postfix)

– – decrement
(prefix or postfix)

C
SS

E
23
10

72
31

45

More Operators: Bit-shifting
and assignment

l a << b means a shifted left by b bits
l a >> b means a shifted right by b bits

n What bits are shifted in from the left depends
on whether a is signed or not. Do not rely on
this.

l a = bmeans a is assigned the value of b
l a += b is shorthand for a=a+b
l Similarly -=, *=, /=, %=, &=, |=, ^=, <<=, >>=
l Examples
1 << 5 is 1 * 25 = 32
3 << 4 is 3 * 24 = 48
a += 1 same as ++a

C
SS

E
23
10

72
31

46

Postfix/Prefix
Increment and Decrement

l Example:
int a,b,c,d,e;
a = 4;
b = a++; /* b=a; a=a+1; */
c = ––a; /* a=a–1; c=a; */
d = ++a; /* a=a+1; d=a; */
e = a––; /* e=a; a=a–1; */

l After these statements,
values are
a=4, b=4, c=4, d=5, e=5

Postfix –
change
happens
after the
value used

Prefix –
change
happens
before the
value used

C
SS

E
23
10

72
31

47

Operator Precedence

l Consider a + b * c
l C has strict operator precedence to

disambiguate expressions like the above
l Above expression means a + (b * c)
l Some operators associate right to left, e.g.
 ~ ++ a means ~ (++ a)
l Most associate left to right:
 a - b - c means (a - b) - c not a - (b - c)

C
SS

E
23
10

72
31

4848

Operators Associativity
() [] –> . Left to right
! ~ + – ++ – – & * (unary versions) Right to left
* / % Left to right
+ – Left to right
<< >> Left to right
< <= > >= Left to right
== != Left to right
& (bitwise and) Left to right
^ (bitwise xor) Left to right
| (bitwise or) Left to right
&& (logical and) Left to right
|| (logical or) Left to right
?: Right to left
= *= /= %= += –= &= ^= |= <<= >>= (assignment) Right to left
, Left to right

Operator Precedence and
Associativity

In
cr

ea
si

ng
 P

re
ce

de
nc

e

C
SS

E
23
10

72
31

49

Exercise (1)

l What’s the result of this code?

You have 1½ minutes

C
SS

E
23
10

72
31

50

Control Statements

l if (expression) stmt else stmt
n else clause is optional

l while (expression) stmt
l do stmt while (expression)
l for(init_expr; test_expr; end_expr) stmt
l Note on expressions:

n C interprets any 0 value as false, anything
else as true

n (Java has a specific boolean type)
l stmt can be replaced by multiple statements

enclosed in braces { }

C
SS

E
23
10

72
31

51

Exercise (2)

l What’s the result of this code?

You have 1 minute

C
SS

E
23
10

72
31

52

For Loop Equivalent Code

for (init_expr; test_expr; iter_expr) statement1;

 is equivalent to:

init_expr;
while (test_expr) {
 statement1;
 iter_expr;
}

l Any or all of the expressions can be empty
l Can use comma to separate multiple expressions:
for (i=0, j=0; i<10; i++, j+= 4)

Statement can be replaced
by multiple statements
enclosed in braces

C
SS

E
23
10

72
31

53

Exercise (3)

l What’s the result of this code?

You have 2 minutes

C
SS

E
23
10

72
31

54

Function Return Values

l If no return type is given, C assumes int
l Where no return value is desired, the keyword

void can and should be used
l It is an error to return the wrong type
l Good idea to prototype a function before it is

used
n Especially if used before being defined, or defined in

another file
n Header files (.h files) contain prototypes for library

functions
l A prototype is like a call to a procedure, but

appears outside any procedure
l Has no procedure body

C
SS

E
23
10

72
31

55

Function Prototypes

int get_voltage(void); /* Prototype for 1st proc */
void disp_voltage(int voltage); /* Another prototype */

main() { /* main does not need a prototype */
v = get_voltage();
disp_voltage(v);
}

int get_voltage(void) { /* Actual body for 1st */
 return inp(...); /* procedure */
}
void disp_voltage(int voltage) {
 printf(...);
}

C
SS

E
23
10

72
31

56

Where do variables live?

int a;
float b;
unsigned int max(unsigned int n1,
unsigned int n2,

unsigned int n3)
{
int max;
max=n1;
if(n2 > max) max=n2;
if(n3 > max) {

max=n3;
}
return max;
}

“global” variables are allocated
fixed addresses in memory

function variables are allocated
memory every time the function is
called. Memory is reclaimed at end
of function.

C
SS

E
23
10

72
31

57

Arrays

l Declaring an array
 type variable-name[size];

n Examples:
 char message[16];
 int values[10];
l Accessing elements within an array

 variable-name[index]
n index = 0 … size-1 (called zero-based indexing)
n Examples:

 message[0] = ‘c’; values[9] = values[8]++;

C
SS

E
23
10

72
31

58

Strings

l A string in C is an array of characters
n End of string indicated by null character

Figure to be drawn in class

C
SS

E
23
10

72
31

59

Arrays in Memory

l [To be presented in class]

C
SS

E
23
10

72
31

60

Array Initialisation

l Arrays can be initialised at declaration, e.g.
n int values[9] = {3, 1, 4, 1, 5};

l if variable is global (static) – remaining elements
initialised to 0

l if variable is local (automatic) – remaining elements
are uninitialised

l Size can be omitted if array is initialised, e.g.
n int a[] = {2,3,5,7};

l length is 4 in this case

C
SS

E
23
10

72
31

61

Initialising String Arrays

l [To be presented in class]

C
SS

E
23
10

72
31

62

Pointers

l C has concept of pointers
l Pointer declaration

n type * variable-name;
n variable-name is a pointer to something of given type

l How? – pointer variables store memory addresses
l Example:
 char a, b;
 char *ptr;

 ptr = &a;
 b = *ptr;
l Figures to be drawn in class

Can write these on one line:
char a,b,*ptr;
& is address-of operator –
creates a pointer

* is indirection operator –
returns value pointed to

63

C
SS

E
23
10

72
31

64

Pointers and Arrays

l Array name can be treated as a pointer
to the first element
n i.e. address of first element

l Example:
int a[10];
int *ptr;

/* following statements are same */
ptr = a;
ptr = &a[0];

C
SS

E
23
10

72
31

65

Operations on Pointers

l Addition/subtraction operations on
pointers work in multiples of the size of
the object being pointed to

l Example
int a[10];
int *ptr;

/* following statements are same */
ptr = a+5;
ptr = &a[5];

C
SS

E
23
10

72
31

66

Traversing an Array

l Two examples of clearing an array
l Using index:
float a[10];
int index;
for(index=0; index<10; index++) {

a[index] = 0.0;
}

l Using pointer:
float a[10], *ptr;
for(ptr=a; ptr < a+10; ptr++) {

*ptr = 0.0;
}

Adding one to an array
pointer makes it point
to next element in array

C
SS

E
23
10

72
31

67

Example Function

l Copying a string – can use index or pointer
l [One version to be presented in class, try

writing the other yourself]

C
SS

E
23
10

72
31

68

Example Function

C
SS

E
23
10

72
31

69

Function Arguments

l Arguments passed to functions are copied (passed by
value)

l Changes made within function don’t affect original arguments
l Example:
void swap(int n1, int n2) {
 int tmp;
 tmp = n1;
 n1 = n2;
 n2 = tmp;
}
void main() {
 int a,b;
 a = 2;
 b = 3;
 swap(a,b);
 … /* nothing has happened */
}

This doesn’t apply when
arrays are passed to
functions – since only a
pointer to the array is
passed.

C
SS

E
23
10

72
31

70

Pointers and Functions

l If pass pointers as an argument to function, CAN change value
that is pointed to (called passing by reference)

n (The pointer is copied - not the value pointed to)
l Example:
void swap(int *n1, int *n2) {
 int tmp;
 tmp = *n1;
 *n1 = *n2;
 *n2 = tmp;
}
void main() {
 int a,b;
 a = 2;
 b = 3;
 swap(&a,&b);
 … /* a and b will be swapped */
}

C
SS

E
23
10

72
31

71

Structures

l Like a class or record – groups several elements (called
members or components) together:

/* Structure definition */
struct Time {
 int hour; /* 0 - 23 */
 int minute; /* 0 - 59 */
 int second; /* 0 - 59 */
};
struct Time time; /* variable decl. */

l Members can be accessed using . (selection) operator
time.hour = 11;
minutes = time.hour*60 + time.minute;

This is the type This is the variable name

C
SS

E
23
10

72
31

72

typedef

l Can define new names for types
n Often used with structures, but can be used for

any type

typedef struct S { int a; int b;} s1type;
n s1type is exactly the same as struct S

typedef int boolean;
n Defines “boolean” to be a synonym for int

S can be omitted
from definition
(have to use
s1type name)

C
SS

E
23
10

72
31

73

Structures and Pointers

l Pointers can point to structures
l Indirection operator ->
l [Code examples to be given in class]

C
SS

E
23
10

72
31

74

Structures and Pointers

l Pointers can point to structures
l Indirection operator ->
l [Code examples to be given in class]

C
SS

E
23
10

72
31

75

Things To Do This Week

l Learn a UNIX text editor
n vi
n Emacs
n nano

l Learn C
n Do C programming tutorials
n Work on C programming exercises

