
The University of Queensland
School of Information Technology and Electrical

Engineering
Semester One, 2012

CSSE2310 / CSSE7231 - Assignment 4
Due: 11:10pm 1 June, 2012

While I have recieved a request to honour the
previous code and its students by setting the deadline

at 23 : 03, I think that could cause confusion.
Marks: 50

Weighting: 25% of your overall assignment mark
(CSSE2310)
Revision 1.4

Introduction

Your task is to write a networked trivia game in c99. This
will require three programs: a client (called trivial) a
server (called serv) and a program to query the scores
(scores).

This assignment will require the use of threads, tcp net-
working and thread-safety. Your assignment submission
must comply with the C style guide available on the course
website. As with Assignment 3, tabs are allowed but all
source code will be run through expand before marking.

1



This assignment is designed to be completed
in stages. Good design and thinking about the
final target would help but it is important to
design, implement and test each stage before
moving on to the next one. Do not attempt the
whole thing in one go.

This is an individual assignment. You should feel free to
discuss aspects of C programming and the assignment spec-
ification with fellow students. You should not actively help
(or seek help from) other students with the actual coding of
your assignment solution. It is cheating to look at another
student’s code and it is cheating to allow your code to be
seen or shared in printed or electronic form. You should
note that all submitted code may be subject to automated
checks for plagiarism and collusion. If we detect plagiarism
or collusion, formal misconduct proceedings will be initi-
ated against you. A likely penalty for a first offence would
be a mark of 0 for the assignment. Don’t risk it! If you’re
having trouble, seek help from a member of the teaching
staff. Don’t be tempted to copy another student’s code.
You should read and understand the statements on student
misconduct in the course profile and on the school web-site:
http://www.itee.uq.edu.au/itee-student-misconduct-including-plagiarism

In this course we will use the subversion (svn) system
to deal with assignment submissions. Do not commit any

2



code to your repository unless it is your own work or it was
given to you by teaching staff. If you have questions
about this, please ask.

Invocation

The client (“trivial” from now on) takes the following
arguments.

1. The name of the player.

2. The port the game server is listening on.

3. The hostname to connect to. This parameter is optional
and if not given, it should default to the local machine.

There is no requirement that player names be unique. Two
clients could connect to a game using the same name. If an
incorrect number of arguments is given, then the following
message should be printed to standard error:

Usage: trivial name port [host]

The exit status is given in table later in this specification.
The server (“serv” from now on) takes the following ar-

guments:

1. Time allowed to answer each question (in seconds)

2. The minimum number of players required for a game to
start/continue.

3



3. The maximum number of players allowed in a game.

4. port number to listen on

5. the name of a file containing questions to ask

6. (optional) additional pairs of parameters giving a port
and a question file

The time to answer questions must be > 0. All ports must
be integers 1 <=port<= 65535. If an incorrect number of
arguments is given, then the following message should be
printed to standard error:

Usage: serv round_time minplayers maxplayers port qfile [port qfile ...]

The exit status is given in table later in this specification.
The scores program takes the following arguments:

1. the port to connect to

2. hostname [optional]

The usage message is:

Usage: scores port [host]

trivial output

Before each question, the server will send a scores line. Af-
ter printing this line and a blank line, the lines which make
up the question are printed. [Note that the terminating . is

4



not displayed]. The options block is preceded by =====
and followed by ++++. Each option is formatted as “%d:
%s”, numbered from 1. For example:

Hello Player 1/1
Scores: T2:0 Joel:0

My life for:
=====
1: chocolate
2: aiur
3: spiders
4: ire
5: cats on the internet
++++

After the time for the question has run out, display the
results and scores lines sent by the server.

Results: T2:TimedOut Joel:TimedOut
Scores: T2:0 Joel:0

If the game is over the client will then display the winners
line from the server. (Note that the server, does not send
the lines in this order.)

Winner(s): T2 Joel

5



If the game is not over, print a blank line and display the
next question.

Formats and protocols

Question file format

Questions in the question file are stored in the following
form:

<One or more lines which make up the question.>\n
----\n
number_of_options correct_option\n
<options, one per line>\n
\n

Options are numbered contiguously starting at 1. Note
that the question description ends in a blank line.

6



A question file consisting of 2 could look like:

1+2*3=
----
6 4
one
three
five
seven
nine
eleven

What operator is missing from the following expression:
1+5 ? 3=3
----
6 4
?:
*
+
%
^
/

7



Questions sent to clients

When questions are sent to clients they are sent in the
following form:

<one or more lines containing the text of the question>\n
.\n
number_of_options\n
<options, one per line>\n

Note that the end of the question text is indicated by a lone
‘.’ and that there is no blank line following the question.

trivial ⇒ serv

On connecting, the client should send their name followed
by a newline. Apart from this, the only things the client
should send are integers representing the correct answers
to questions. Each integer should be followed by a newline.

Note that trivial should not (knowingly) send an in-
valid guess to the server. If the user enters an invalid guess
(< 1, greater than the biggest option, not an integer), then
the client should print Invalid guess followed by a new-
line to stdout and read another guess.

8



What should the server accept from the client? Remember
that the server might be running against a buggy client. Do
not assume that just because your client behaves correctly
that every client does. The server should only accept input
consisting of digits and ‘\n’. If any other chars are recieved
the server will disconnect.

It is still possible to have bad inputs that only consist of
permitted chars. For example, blank lines or a long string
of digits, or “0”. These will always be wrong but will not
cause a disconnect. If it would help, you can assume that
no question will ever have more than 999 possible answers.

What should the client accept from the user? For exam-
ple, is “1batman” valid or not? You can decide this your-
selves1? That is, we will not expect sensible answers from
your programs with client input like that. However, we will
expect your client to keep processing further questions. It
must not shutdown or loop when fed input like that.

scores ⇔ serv

scores should connect to serv, send the string “scores”
followed by a newline. It should then print whatever the
server sends back to stdout.

1My version accepts anything that atoi will process.

9



serv must allow score queries even if the game running on
the port is full. For each player (name) who has connected
since the server started send back a row containing the
following text:
name played:? won:? disc:? score:?
Where the ? should be replaced with the number of games
that name has connected to, won, disconnected early from
and their total score over all games. (If a player connects,
then disconnects and reconnects this counts as two games)

The “connected” counter should be updated as soon as a
player connects to a game (connecting to a full game doesn’t
count). The other counters should be updated when the
game ends or the player disconnects.
Note: there is a single score table for all ports that

the server is listening on. Connecting to any of the
servers ports should produce the same results.

Communication protocols

If a game is full when trivial attempts to connect, the
server must send a line beginning with $. Then disconnect
that client.

See Figure 1 for an illustration. Each of the send steps
shown in the figure consists of sending the same text to all
connected clients. (The hello message is only sent to the

10



Game start

Wait for connection

Send scores

send question

wait

Send correct? Send winner

Send correct?

Send scores

game over?
YesNo

close all connections

Game over

Enough players
No

Yes

Send hello

Figure 1: Main steps for the server playing a game

11



new player).

� Send scores — An ‘S’ followed by name:score for each
player (space separated).

� Send winner — A ‘W’ followed by the names of all play-
ers with the maximal score (in the current game).

� Send correct? — A ‘C’ followed by name:result for
each player (space separated). Where result is one of
“TimedOut”, “Correct”, “Incorrect”. TimedOut should
be sent when the client does not send an answer in time.

These leading characters should be stripped before the client
displays them.
If the client receives a line which does not follow this

protocol, it should exit with an error (see table later).

Compilation

Your code (all three programs) must compile with com-
mand:
make

Each individual file must compile with at least -Wall
-pedantic -std=gnu99. You may of course use addi-
tional flags (eg -pthread) but you must not use them to
try to disable or hide warnings. You must also not use
pragmas to achieve the same goal.

12



If any errors result from the make command (ie no exe-
cutables can be created), then you will receive 0 marks for
functionality. Any code without academic merit will be re-
moved from your program before compilation is attempted
(and if compilation fails, you will receive 0 marks for func-
tionality). If your code produces warnings (as opposed to
errors), then you will lose style marks (see later).

Your solution must not invoke other programs. Your so-
lution must not use non-standard headers/libraries.

Stages

The following are suggestions not requirements:

1. Write scores first, use netcat as a server and test against
that.

2. trivial client

3. serv running on one port handling one game then exit.

4. serv starting a new game when the previous one fin-
ishes.

5. serv running games on multiple ports.

6. serv correctly handling disconnecting players.2
2Changes in players should only take affect when a new question is sent. For example, if the game was full and a player

disconnected, no more players can be admitted to the game until the next question. Implementing these features will require
modifications to the states shown in Fig. 1

13



7. serv allowing players to connect to games which have
room.1

Exit status

scores

Condition Status Message to stderr
Insufficient argu-
ments

1 Usage: scores port [host]

Invalid port# 4 Invalid Port
Unable to con-
nect to server

5 Bad Server

System error 8 System Error
It’s all good 0

14



trivial

Condition Status Message to stderr
Insufficient argu-
ments

1 Usage: trivial name port [host]

Invalid port# 4 Invalid Port
Unable to con-
nect to server

5 Bad Server

System error 8 System Error
End of input on
client before the
end of the game

9 Client EOF

Server discon-
nected at an
unexpected time

10 Server Disconnected

The game on the
specified port is
currently full

11 Server Full

Server does not
follow protocol

12 Protocol Error

It’s all good 0

15



serv

Condition Status Message to
stderr

Insufficient argu-
ments

1 Usage: serv
round time min-
players maxplayers
port qfile [port qfile
...]

Round time, max
or min players is
not a positive in-
teger

2 Bad Number

Can’t open ques-
tion files or fail to
read a valid ques-
tion from file

3 Bad File

Invalid port# 4 Invalid Port
Unable to listen
on a port

6 Bad Listen

System error pro-
cessing an incom-
ing connection

7 Bad Client

System error 8 System Error
It’s all good 0

16



Style

You must follow version 1.6 of the C programming style
guide found at:
http://courses.itee.uq.edu.au/csse2310/2012s1/
resources/c_resources.html All tab characters will
be replaced using the expand tool before assignment are
marked.

Submission

Submission must be made electronically by committing us-
ing subversion. In order to mark your assignment the mark-
ers will check out /ass4/trunk from your repository on
svn.eait.uq.edu.au. Code checked in to any other part
of your repository will not be marked.

The due date for this assignment is given on the front
page of this specification. Note that no submissions can
be made more than 120 hours past the deadline under any
circumstances.

Test scripts will be provided to test the code on the trunk.
Students are strongly advised to make use of this facility
after committing.

Note: Any .h or .c files in your trunk will be marked
for style even if they are not linked by the makefile. If you

17



need help moving/removing files in svn, then ask.
You must submit a Makefile or we will not be able to

compile your assignment. Remember that your assignment
will be marked electronically and strict adherance to the
specification is critical.

Additional requirements

Marks

Marks will be awarded for both functionality and style.

Style (6 marks)

If g is the number of style guide violations and w is the
number of compilation warnings, your style mark will be
the minimum of your functionality mark and:

6× 0.9g+w

The number of compilation warnings will be the total
number of distinct warning lines reported during the com-
pilation process described above. The number of style guide
violations refers to the number of violations of version 1.6
of the C Programming Style Guide. A maximum of 5 vi-
olations will be penalised for each broad guideline area.
The broad guideline areas are Naming, Comments, Braces,

18



Whitespace, Indentation, Line Length and Overall. For
naming violations, the penalty will be one violation per of-
fending name (not per use of the name) up to the maximum
of five. You should pay particular attention to comment-
ing so that others can understand your code. The marker’s
decision with respect to commenting violations is final —
it is the marker who has to understand your code. To sat-
isfy layout related guidelines, you may wish to consider the
indent(1) and expand(1) tools. Your style mark can
never be more than your functionality mark — this pre-
vents the submission of well styled programs which don’t
meet at least a minimum level of required functionality.

Functionality (44 marks)

Provided that your code compiles (see above), you will earn
functionality marks based on the number of features your
program correctly implements, as outlined below. Partial
marks will be awarded for partially meeting the function-
ality requirements. Not all features are of equal difficulty.
If your program does not allow a feature to be tested then
you will receive 0 marks for that feature, even if you claim
to have implemented it. For example, if your program can
never open a file, we can not determine if your program
would have loaded input from it. The markers will make

19



no alterations to your code (other than to remove code
without academic merit). Your programs should not crash
or lock up/loop indefinitely.

20



� scores

– Exit status and messages (2 marks)

– Correct operation (3 marks)

� trivial

– Arg processing and exit status (2 marks)

– Correctly handle attempt to connect to a full game
(ie one which already has the maximum number of
players.) (2 marks)

– Correctly handle a game with one question(2 marks)

– Correctly detect invalid guesses (2 marks)

– Play games consisting of multiple questions, invalid
guesses, badly behaved servers, early end-of-input . . .
(4 marks)

� serv

– One game, one player, one question (2 marks)

– One game, multiple players, one question (2 marks)

– One game, multiple players (2 marks)

– Correctly handle attempts to connect to full game(2
marks)

– Game with disconnecting players (2 marks)

– A sequence of games on the same port (4 marks)

– Serve multiple ports (4 marks)

– Allow players to join non-full games (4 marks)

– correctly produce scores (3 marks)

– No memory leaks (according to valgrind3) (2 marks)

Some of the marking items depend on other items. For
example, Playing a full game on the client relies on being

3In order to be eligable for these marks, you must at least support a sequence of games on the same port.

21



able to handle a game containing only one question. In
some cases, valgrind may report memory as leaked when it
is unavoidable or out of the programmers control. To deal
with such cases we will provide a supressions file to ex-
clude those cases. We are only concerned with leaks which
valgrind reports as “definitely lost”.

Be careful with your resource usage and make sure to
clean up While it is true that resources are (generally)
cleaned up when the process exits, servers are expected
to be able to run for long periods of time.

Late Penalties

Late penalties will apply as outlined in the course profile.

Specification Updates

It is possible that this specification contains errors or incon-
sistencies or missing information. It is possible that clar-
ifications will be issued via the course website. Any such
clarifications posted 5 days (120 hours) or more before the
due date will form part of the assignment specification. If
you find any inconsistencies or omissions, please notify the
teaching staff.

22



Notes and tips

� Start early.

� If any aspect of the spec is unclear, inconsistant or in-
complete then ask questions.

� netcat (nc) can function as a TCP client or server. It is
your friend, learn to use it.

� Think about how many threads you will need and what
they will do. Do this before you start coding. Writing
code to experiment with the concepts is a good idea but
you must be able to explain to tutors what your threads
are supposed to be doing when you ask for help. For
example, the client will need to listen to both the user
and the server at the same time.

� The server must be multi-threaded (no select()).

� Clients disconnecting unexpectedly must not crash your
server.

� The server does not clear input streams before each
question is sent so if the client sends multiple guesses
in succession or sends a guess late, they will be counted
as the answers to future questions.

� scores

23



– Once a connection has been established, any read/write
errors should be interpreted as the server disconnect-
ing.

– Any system call failures, prior to the connection being
established are grouped under — couldn’t connect.

– Even if the server is running games on multiple ports,
there is still only one score table. Connecting to any
valid server port should display scores from all games
on all ports.

� Some useful functions to look at:

– sigwait

– pthread sigmask

� Memory leak marks: If you wish to attempt the no
leaked memory part of the assignment, you will need
to add an additional signal handler for SIG HUP. After
your server receives SIG HUP it should not start any
new games. It should allow any games currently run-
ning to finish (waiting for extra connections if there are
not enough players). Once all games have finished, the
server should close down. To get the marks, valgrind
must not report any memory as definitely lost.

Please do not spend time on this part unless you have a
resonable portion of the server implemented successfully.

24



Updates

1. 1.0.1→ 1.2

� As soon as trivial connects and gives their name,
the server sends:

Hello Player x/y.

Where x is the current number of players (after adding
the new player) and y is the minimum number of
players required to continue the game.

� The “Insufficient arguments” error also applies if argc
for serv is an odd number greater than 6. (This
would happen if a port is given with no qfile).

� Moved exit status 8 and 0 into the table for clarity. So
when to use System Error vs Bad Server/Bad Client?
In a more thorough version of this type of program we
would distinguish different types of failures for each
operation. In this assignment though, failed system
calls which relate to establishing the network connec-
tions will be reported as Bad Server/Client. These
calls could be expected to fail under normal opera-
tion. For example if the port you are attempting to
connect to does not have a server on it.

System Error is reserved for calls which would not

25



be expected to fail under normal circumstances. For
example, fdopen or pthread create failing would be a
System Error.

2. 1.2→ 1.3

(a) All communication between the client and server is
as text. Do not send integers as raw bytes.

(b) Emphasised the single score table for all ports in the
scores section.

(c) Consistant usage instructions for serv

(d) More explanation about sending a guess before know-
ing whether it was too large in the trivial⇒ serv
section. There are also some changes here about what
answers the server will accept.

(e) The records returned by the scores program should
be in order that the players first connected in.

(f) We will not test situations where the minimum play-
ers required is greater than the maximum allowed.

3. 1.3→ 1.4

(a) We will not check the order that records appear in
the score table.

(b) trivial now has a new error message and exit code
for when the server doesn’t follow the protocol.

26



(c) Clarified the marking criteria (what does “full” game
mean?)

27


