
The University of Queensland
School of Information Technology and Electrical

Engineering
Semester One, 2012

CSSE2310 / CSSE7231 - Assignment 3
Due: 11:10pm 11 May, 2012

Marks: 50
Weighting: 25% of your overall assignment mark

(CSSE2310)
Revision 1.5

Introduction

Your task is to write a (c99) program (called thresher)
which executes a specified compiler and produces a report
on the number and type of errors encountered. This will
require creating processes and interprocess communication.
Your assignment submission must comply with the C style
guide available on the course website.

This is an individual assignment. You should feel free to
discuss aspects of C programming and the assignment spec-
ification with fellow students. You should not actively help
(or seek help from) other students with the actual coding of
your assignment solution. It is cheating to look at another
student’s code and it is cheating to allow your code to be

1



seen or shared in printed or electronic form. You should
note that all submitted code may be subject to automated
checks for plagiarism and collusion. If we detect plagiarism
or collusion, formal misconduct proceedings will be initi-
ated against you. A likely penalty for a first offence would
be a mark of 0 for the assignment. Don’t risk it! If you’re
having trouble, seek help from a member of the teaching
staff. Don’t be tempted to copy another student’s code.
You should read and understand the statements on student
misconduct in the course profile and on the school web-site:
http://www.itee.uq.edu.au/itee-student-misconduct-including-plagiarism

In this course we will use the subversion (svn) system
to deal with assignment submissions. Do not commit any
code to your repository unless it is your own work or it was
given to you by teaching staff. If you have questions
about this, please ask.

Invocation

When run with less than three arguments (not counting
thresher it should print usage instructions to stderr:

Usage: thresher [--show] type command filename ...

The type indicates both the arguments used for the build
and how to identify errors. The cmd is the program to ex-

2



Type Build options
ansiC prog -ansi -pedantic -Wall file
c99 prog -std=gnu99 -pedantic -Wall file
java prog -d . file
latex prog file

Table 1: prog and file should be replaced with the relevant parameters.

ecute to perform the build. The remaining arguments are
the names of files to be processed. The optional --show
argument indicates that output generated by the build pro-
gram should be output to stdout.

For example:

� ./thresher ansiC gcc bob.c
Would use gcc to compile bob.c using ansiC options
and looking for C errors.

� ./thresher java javac c1.java c2.java
Would compile c1.java and c2.java (individually)
using javac.

The build options are as shown in Table 1. Descriptions
of how to identify errors are given later in this specification.

Compilation

Your code must compile with command:
make

3



Each individual file must compile with at least -Wall
-pedantic -std=gnu99. You may of course use addi-
tional flags but you must not use them to try to disable or
hide warnings. You must also not use pragmas to achieve
the same goal.

If any errors result from the make command (ie the exe-
cutable cannot be created), then you will receive 0 marks
for functionality. Any code without academic merit will
be removed from your program before compilation is at-
tempted (and if compilation fails, you will receive 0 marks
for functionality). If your code produces warnings (as op-
posed to errors), then you will lose style marks (see later).

Your solution must not invoke other programs apart from
those passed on the command line. Your solution must not
use non-standard headers/libraries.

Exit status

4



Condition Status Message to stderr
Too few parame-
ters

1 Usage: thresher [--show] type command filename ...

Type parameter
is not a one of the
permitted values

2 Unknown build type

Exec of build
program fails

3 Exec failed

Other system call
error

4 System error

Build program
exits with status
!=0

5

All other circumstances thresher should exit with sta-
tus 0.

Reports

If the --show argument is given, then all output on the
tool’s standard error (or stdout in the case of LATEX builds)
should be echoed to thresher’s standard out.

Once each file has been processed a report should be
printed to stdout. The first line should consist of 4 dashes.
Any output required by the --show option comes next fol-

5



lowed by a line of four dashes. Do not print this second
line if not using --show. Then a count of each type of
error that occurred. If an error type did not occur, do not
print it. Next print the filename followed by either “exited
with status X”1 or “did not exit normally” if the program
terminated for some other reason. Finally, print another
row of 4 dashes.

No other output should be produced when your program
is run.

For example, if gcc -ansi -pedantic -Wall err.c
outputs:

err.c: In function `main':
err.c:3:4: error: `for' loop initial declarations are only allowed in C99 mode
err.c:3:4: note: use option -std=c99 or -std=gnu99 to compile your code
err.c:5:7: warning: implicit declaration of function `getType' [-Wimplicit-function-declaration]
err.c:5:23: error: `sdfsdf' undeclared (first use in this function)
err.c:5:23: note: each undeclared identifier is reported only once for each function it appears in
err.c:5:31: error: `sdf' undeclared (first use in this function)
err.c:8:7: error: label at end of compound statement
err.c:11:4: error: expected expression before '/' token
err.c:13:1: warning: control reaches end of non-void function [-Wreturn-type]

./thresher ansiC gcc err.c would output:

----
1subsitute the real exit status

6



1 implicit declaration
2 undeclared
1 c99
1 c++ comment?
2 other
err.c exited with status 1
----

Error Types

The following sections describe how to identify errors in the
different build types. In each case, the conditions should be
checked in the order given in below. Once one condition is
met, do not check for any further possibilities further down.

ansiC

1. Ignore any lines which do not begin with name:number :

2. Ignore any lines which contain note:

3. Ignore any lines which contain error: (Each undeclared

4. Ignore any lines which contain error: for each function

5. A line containing: “implicit declaration” is type “im-
plicit declaration”.

6. A line containing: “undeclared” is type “undeclared”.

7



7. A line containing: “C99 mode” is type “c99”

8. A line containing: “expected expression before '/' to-
ken” is type “c++ comment?”

9. All other lines are type “other”

C99

Follows the same sequence as ansiC but rules 7 and 8 do
not apply.

java

1. Ignore any lines which do not begin with name:number :

2. Any lines which contain “<identifier> expected” are
type “missing identifier”

3. Any lines which contain “cannot find symbol” are “miss-
ing symbol”

4. Any lines which contain “static context” are “non-static
access”

5. Any other lines are type “other”.

latex

1. Any line that contains “! Missing $ inserted.” is of type
“math mode error”.

8



2. Any line that contains “! Undefined control sequence.”
is of type “bad macro”.

3. Any containing “LaTeX Warning” is of type “warning”

4. Any containing “LaTeX Error” is of type “error”

5. Any containing “Overfull \hbox” is of type “bad box”

6. Ignore all other lines.

LATEX expects a response to certain messages. When your
program detects Item 1 or 2 it should send a newline char-
acter to the program. When it detects Item 4 it should
send ‘X’ followed by a newline.

Regardless of the “compiler” chosen, do not send text to
it unless it is actually required. That is, do not try to make
life easier for yourself by sending a long string of X’s to the
compiler.

Style

You must follow version 1.6 of the C programming style
guide found at:
http://courses.itee.uq.edu.au/csse2310/2012s1/
resources/c_resources.html All tab characters will
be replaced using the expand tool before assignment are
marked.

9



Submission

Submission must be made electronically by committing us-
ing subversion. In order to mark your assignment the mark-
ers will check out /ass3/trunk from your repository on
svn.eait.uq.edu.au. Code checked in to any other part
of your repository will not be marked.

The due date for this assignment is given on the front
page of this specification. Note that no submissions can
be made more than 120 hours past the deadline under any
circumstances.

Test scripts will be provided to test the code on the trunk.
Students are strongly advised to make use of this facility
after committing.

Note: Any .h or .c files in your trunk will be marked for
style even if they are not linked by the makefile. If you
need help moving/removing files in svn, then ask.

You must submit a Makefile or we will not be able
to compile your assignment. Remember that your assign-
ment will be marked electronically and strict adherance to
the specification is critical.

10



Additional requirements

When thresher exits, it should not leave any child pro-
cesses running. If thresher receives SIGINT it should
terminate any child process which is running and then exit
with status 0.

Marks

Marks will be awarded for both functionality and style.

Functionality (42 marks)

Provided that your code compiles (see above), you will earn
functionality marks based on the number of features your
program correctly implements, as outlined below. Partial
marks will be awarded for partially meeting the function-
ality requirements. Not all features are of equal difficulty.
If your program does not allow a feature to be tested then
you will receive 0 marks for that feature, even if you claim
to have implemented it. For example, if your program can
never open a file, we can not determine if your program
would have loaded input from it. The markers will make
no alterations to your code (other than to remove code
without academic merit). Your programs should not crash
or lock up/loop indefinitely.

11



� Correctly invalid arguments (2 marks)

� ansiC build type

– Correct reporting for a build producing only “other”
errors (8 marks)

– Correct reporting for all error types (6 marks)

– Implement --show option (4 marks)

� C99 build type (5 marks)

� java build type (5 marks)

� latex build type (10 marks)

� Correctly terminating child process on SIGINT (2
marks)

Style (8 marks)

If g is the number of style guide violations and w is the
number of compilation warnings, your style mark will be
the minimum of your functionality mark and:

8× 0.9g+w

The number of compilation warnings will be the total
number of distinct warning lines reported during the com-
pilation process described above. The number of style guide
violations refers to the number of violations of version 1.6

12



of the C Programming Style Guide. A maximum of 5 vi-
olations will be penalised for each broad guideline area.
The broad guideline areas are Naming, Comments, Braces,
Whitespace, Indentation, Line Length and Overall. For
naming violations, the penalty will be one violation per of-
fending name (not per use of the name) up to the maximum
of five. You should pay particular attention to comment-
ing so that others can understand your code. The marker’s
decision with respect to commenting violations is final —
it is the marker who has to understand your code. To sat-
isfy layout related guidelines, you may wish to consider the
indent(1) and expand(1) tools. Your style mark can
never be more than your functionality mark — this pre-
vents the submission of well styled programs which don’t
meet at least a minimum level of required functionality.

Late Penalties

Late penalties will apply as outlined in the course profile.

Specification Updates

It is possible that this specification contains errors or incon-
sistencies or missing information. It is possible that clar-
ifications will be issued via the course website. Any such

13



clarifications posted 5 days (120 hours) or more before the
due date will form part of the assignment specification. If
you find any inconsistencies or omissions, please notify the
teaching staff.

Test Data

Test data and scripts for this assignment will be made avail-
able. The idea is to help clarify some areas of the specifica-
tion and to provide a basic sanity check of code which you
have committed. They are not guaranteed to check all
possible problems nor are they guaranteed to resemble
the tests which will be used to mark your assignments.
Testing that your assignment complies with this specifica-
tion is still your responsibility.

Notes and tips

� Start early.

� Write simple programs to try out fork(), exec() and
pipe().

� If the builder fails to execute, the output (with --show)
should be:

----

14



----
Exec failed
----

� Be sure you test on moss. Different versions of gcc may
produce slightly different error messages.

� Your program must not call the following functions:
system(), popen(), prctl().

� You should not assume that system calls will always
succeed.

Updates

1. Added prctl to the list of banned functions.

2. Modified the flags to javac.

3. Modified some ignore lines for ansiC to accomodate dif-
ferent gcc versions.

4. Fixed missing space in java error descriptions.

5. Do not attempt to build multiple files concurrently. Build
the first one, print the report, then move on.

6. If any build step fails, then thresher should exit. Only
attempt to build the next file if the previous one re-
turned 0.

15



7. Tabs are now permitted in source files BUT, all assign-
ments will be run through expand before marking.

8. Ammended Latex error conditions.

9. - (1.4) Corrected which output stream to read (stderr
for everything except LATEX)

10. Fixed more en-dash sloppiness

11. - (1.5) Fixed err.c example

12. All LaTeX error types are now any line containg. They
don’t need to be the only thing on the line.

16


