
The University of Queensland
School of Information Technology and Electrical

Engineering
Semester One, 2012

CSSE2310 / CSSE7231 - Assignment 1
Due: 11pm 23 March, 2012

Marks: 50
Weighting: 25% of your overall assignment mark

(CSSE2310)
Revision 1.2

Introduction

Your task is to write a program (called noline) which
plays a game using the rules given in this specification.
This will require I/O from both the user and from files.
Your assignment submission must comply with the C style
guide available on the course website.

This is an individual assignment. You should feel free to
discuss aspects of C programming and the assignment spec-
ification with fellow students. You should not actively help
(or seek help from) other students with the actual coding of
your assignment solution. It is cheating to look at another
student’s code and it is cheating to allow your code to be
seen or shared in printed or electronic form. You should

1

note that all submitted code may be subject to automated
checks for plagiarism and collusion. If we detect plagiarism
or collusion, formal misconduct proceedings will be initi-
ated against you. A likely penalty for a first offence would
be a mark of 0 for the assignment. Don’t risk it! If you’re
having trouble, seek help from a member of the teaching
staff. Don’t be tempted to copy another student’s code.
You should read and understand the statements on student
misconduct in the course profile and on the school web-site:
http://www.itee.uq.edu.au/itee-student-misconduct-including-plagiarism

In this course we will use the subversion (svn) system
to deal with assignment submissions. Do not commit any
code to your repository unless it is your own work or it was
given to you by teaching staff. If you have questions
about this, please ask.

The Game

The game is played by two players (O and X) on a square
grid of cells. The cells are referred to by their row followed
by their column (with each value beginning at zero). The
players take turns placing tiles on empty cells [all cells are
empty at the start of the game]. Player O makes the first
move. The player who forms a line (horizontal, vertical or
diagonal) of three or more of their own adjacent tiles loses.

2

The game ends in a draw if there are no empty cells left
but neither player has lost.

3

Example
game

.....
.....
.....
.....
.....
=====
O> 0 0

O....
.....
.....
.....
.....
=====
X> 0 4

O...X
.....
.....
.....
.....

=====
O> 4 4

O...X
.....
.....
.....
....O
=====
X> 3 1

O...X
.....
.....
.X...
....O
=====
O> 3 0

O...X
.....
.....
OX...
....O
=====

X> 1 2

O...X
..X..
.....
OX...
....O
=====
O> 2 4

O...X
..X..
....O
OX...
....O
=====
X> 4 0

O...X
..X..
....O
OX...
X...O
=====
O> 2 1

O...X
..X..
.O..O
OX...
X...O
=====
X> 1 4

O...X
..X.X
.O..O
OX...
X...O
=====
O> 4 1

O...X
..X.X
.O..O
OX...
XO..O
=====

X> 3 3

4

O...X
..X.X
.O..O
OX.X.
XO..O
=====
O> 0 3

O..OX
..X.X
.O..O
OX.X.
XO..O
=====
X> 1 0

O..OX
X.X.X
.O..O
OX.X.
XO..O
=====
O> 2 0

O..OX
X.X.X
OO..O
OX.X.
XO..O
=====
X> 4 2

O..OX
X.X.X
OO..O
OX.X.
XOX.O
=====
O> 4 3

O..OX
X.X.X
OO..O
OX.X.
XOXOO
=====
X> 3 4

O..OX
X.X.X
OO..O
OX.XX
XOXOO
=====
O> 2 3

O..OX
X.X.X
OO.OO
OX.XX
XOXOO
=====
X> 0 1

OX.OX
X.X.X
OO.OO
OX.XX
XOXOO
=====
O> 0 2

OXOOX
X.X.X
OO.OO
OX.XX
XOXOO
=====
X> -10 0
X> 0 0
X> 0 5
X> 4
X> cats
X> 1 1

OXOOX
XXX.X
OO.OO
OX.XX
XOXOO
=====
Player X loses.

5

Invocation

When run with no arguments it should print usage instruc-
tions to stderr:

Usage: noline dim [playerXtype [playerOtype [Oin Oout Xin Xout]]]

When run with any number of arguments other than 0, 1,
2, 3 or 7, the program should exit with an error (see table
later).

The meaning of the parameters is as follows:

6

Parameter Meaning
dim Side length of the grid

(must be an odd integer
>1)

playerXtype ‘1’ or ‘2’ denotes a com-
puter controlled player, ‘0’
denotes a “human” player

playerOtype (as above) defaults to 0 if
not specified.

Oin Where to read playerO’s
moves from: ’-’ use stdin;
anything else will be treated
as a filename.

Oout Where to send mes-
sages/output for playerO
to: ’-’ use stdout; anything
else will be treated as a
filename

Xin, Xout (as above)

If the last four arguments are not given, then they default
to ’-’.

7

Compilation

Your code must compile with command:
gcc -Wall -ansi -pedantic noline.c -o noline

You must not use flags or pragmas to try to disable or
hide warnings.

If any errors result from the compile command (ie the ex-
ecutable cannot be created), then you will receive 0 marks
for functionality. Any code without academic merit will
be removed from your program before compilation is at-
tempted (and if compilation fails, you will receive 0 marks
for functionality). If your code produces warnings (as op-
posed to errors), then you will lose style marks (see later).

Your solution must not invoke other programs or use
non-standard headers/libraries. It must consist of a single,
properly commented and indented C file called noline.c.

Player types

0 A “human” player, that is, moves are read in rather than
generated by the program itself.

1 Instead of reading moves, this player type will check the
cell (row, column) for a given n (where n=0 for first
move, 1 for second move, . . .):
k = n · (s + 2) mod (s2),

8

row= k/s, col= k mod s.
Note: s is the side length of the board.

2 Very similar to type 1 except that it starts in the op-
posite corner (s− 1, s− 1) and counts backwards. For
example: if s= 11, then the first cells to try would be:

– 10 10

– 9 8

– 8 6

– 7 4

– . . .

Player types 1 and 2 should print the move they chose to
their output (followed by a newline).

Errors

All error messages in this program should be sent to standard
error. Error conditions should be tested in the order given
in the following table. All messages are followed by a new-
line.

9

Condition Exit Status Message
Program started
with invalid number
of arguments

1 Display usage
instructions

Board dimension is
not an odd integer
>1

2 Invalid board di-
mension.

Player type is not 0,
1, 2

3 Invalid player
type.

Can not access files
given as args 4, 5, 6.
7

4 Invalid files.

Note that entering an invalid move is not an error condi-
tion. In such cases, the prompt for that player should be
displayed again and more input read.

Other Messages

The following messages should be sent to both players. If
both players are using stdout, then only print the message
once.

10

Condition Messages
Game over (Board is
full)

The game is a draw.

Game over (player?
loses)

Player ? loses.

Game over (EOF for
player?)

Player ? loses due to
EOF.

Move Sequence

When it is a player’s turn:

1. Print the board (to their output).

2. Display prompt and wait for input.

3. If player enters an invalid move, go to 2.

End of Game Behaviour

When the game ends, print the board to both players. Then
print the end of game message to both players. Note: If
both players are using stdout then only print these items
once.

11

Valid Input

Integer command arguments must not contain any other
characters. For move input (which should be processed a
line at a time), if scanf(“%d %d”, . . .) would extract 2
integers from it correctly [and the line contains less than
80 characters] then it is acceptable. No line longer than 80
characters is considered valid.

Style

You must follow version 1.6 of the C programming style
guide found at:
http://courses.itee.uq.edu.au/csse2310/2012s1/
resources/c_resources.html

Submission

Submission must be made electronically by committing us-
ing subversion. In order to mark your assignment the mark-
ers will check out /ass1/trunk from your repository on
svn.eait.uq.edu.au. Code checked in to any other part
of your repository will not be marked.

The due date for this assignment is Friday 23th March at
11pm. Note that no submissions can be made more than

12

120 hours past the deadline under any circumstances.
Test scripts will be provided to test the code on the trunk.

Students are strongly advised to make use of this facility
after committing.

Marks

Marks will be awarded for both functionality and style.

Functionality (42 marks)

Provided that your code compiles (see above), you will earn
functionality marks based on the number of features your
program correctly implements, as outlined below. Partial
marks will be awarded for partially meeting the function-
ality requirements. Not all features are of equal difficulty.
If your program does not allow a feature to be tested then
you will receive 0 marks for that feature, even if you claim
to have implemented it. For example, if your program can
never open a file, we can not determine if your program
would have loaded input from it. The markers will make
no alterations to your code (other than to remove code
without academic merit). Your programs should not crash
or lock up/loop indefinitely.

• Command args

13

– invalid dimension (1 mark)

– usage instructions for incorrect number of args (1
mark)

– player type invalid (1 mark)

– file access errors (1 mark)

• Correctly display initial board (2 marks)

• Correctly handle initial move (4 marks)

• Complete games

– “human” players only (10 marks)

– “human” vs AI (6 marks)

– AI vs AI (4 marks)

– Large boards (6 marks)

– Split input and output (6 marks)

Style (8 marks)

If g is the number of style guide violations and w is the
number of compilation warnings, your style mark will be
the minimum of your functionality mark and:

8 × 0.9g+w

The number of compilation warnings will be the total
number of distinct warning lines reported during the com-
pilation process described above. The number of style guide

14

violations refers to the number of violations of version 1.6
of the C Programming Style Guide. A maximum of 5 vi-
olations will be penalised for each broad guideline area.
The broad guideline areas are Naming, Comments, Braces,
Whitespace, Indentation, Line Length and Overall. For
naming violations, the penalty will be one violation per of-
fending name (not per use of the name) up to the maximum
of five. You should pay particular attention to comment-
ing so that others can understand your code. The marker’s
decision with respect to commenting violations is final —
it is the marker who has to understand your code. To sat-
isfy layout related guidelines, you may wish to consider the
indent(1) tool. Your style mark can never be more than
your functionality mark — this prevents the submission of
well styled programs which don’t meet at least a minimum
level of required functionality.

Test submissions

Late Penalties

Late penalties will apply as outlined in the course profile.

15

Specification Updates

It is possible that this specification contains errors or incon-
sistencies or missing information. It is possible that clar-
ifications will be issued via the course website. Any such
clarifications posted 5 days (120 hours) or more before the
due date will form part of the assignment specification. If
you find any inconsistencies or omissions, please notify the
teaching staff.

Test Data

Test data and scripts for this assignment will be made avail-
able. The idea is to help clarify some areas of the speci-
fication and to provide a basic sanity check of code which
you have committed. They are not guaranteed to check all
possible problems nor are they guaranteed to resemble the
tests which will be used to mark your assignments. Testing
that your assignment complies with this specification is still
your responsibility.

Notes and tips

• Where possible debug on a small board.

• Do not attempt to write complex operations in one go.

16

Decompose them into simpler tasks and get those work-
ing first.

– Do not write separate functions to handle each pos-
sible direction.

– See your tutors for strategies.

• Make sure your code is generic — the size of the current
board should not be hardcoded.

• How you handle EOF is important since some of the
tests rely on it.

• GET STARTED!

Updates

• If noline is run with no arguments, then print usage
instructions and exit with 1.

• We will not test an AI player with an invalid input file
(since AI players do not attempt to use the file).

• Clarified meaning of symbols in the move formulae.

17

