
eUniversity of Queensland
School of Information Technology and Electrical Engineering

Semester Two, 2012

COMP3301/COMP7308
Assignment 3 — File systems

Due: 8pm Friday 26th October 2012
Weighting: 25% for COMP3301 students (100 marks total)

Version 1.0 — 1 October 2012

Introduction
e goal of this assignment is to give you practical experience modifying an existing ĕle system
for Linux.

You will need to complete the ĕle systems practical before attempting this assignment, as it
instructs you how to clone the ext3301 ĕle system that you will be using for the assignment.

You will complete this assignment on the virtual machine image provided on the course web-
site. More information on this image is available under the Resources page.

is assignment may be completed individually or in self-selected groups of two. Please
read the section on group work if you decide to work in groups of two. Although you may share
code with your teammember (if working in groups of two), it is still considered cheating to look
at another student’s code or allow your code to be seen or copied by anyone but your partner.
You should be aware that all code submitted may be subject to automated checks by plagiarism-
detection soware. You should read and understand the school’s policy on student misconduct,
which is available in the course proĕle.

Overview
e assignment is split into two distinct parts. You are required to implement both parts in the
same ĕle system driver, and they must interact as described below.

When loaded, your ĕle system driver should register itself with type ext3301.
It may be useful to mount any ĕle systems you create with the debug mount option while

testing. is will cause the module to output extensive information to the kernel’s ring buffer
describing what it is doing. You may add new calls to write debugging information out (using

1



the existing ext2 debug calls), but please remove any calls to printk() before submitting your
assignment (if you added any).

Part A— Immediate ĕles
In the unmodiĕed ext2 ĕle system, regular ĕles are stored in data blocks on a block device (of-
ten a hard disk). Pointers to these data blocks live in the inode structure as single, double and
triple indirect pointers. ese pointers take up 60 bytes of space in the inode, but some (if not
all) are oen unused if the ĕle is small. For more information on the inode structure, see the
Documentation/ĕlesystems/ext2.txt ĕle inside the kernel source tree.

Immediate ĕles are a way of storing the contents of a small ĕle directly in the inode structure,
in the unused block pointers, rather than in data blocks. Files up to 60 bytes can have their
contents stored in these pointers, and no data blocks need to be allocated. Files over 60 bytes
cannot ĕt in the inode, so they need to be stored in allocated blocks, and the block pointers need
to be used to point to these data blocks (just like in the existing ext2 ĕle system).

Your task for this part of the assignment is to implement immediate ĕles in the ext3301 ĕle
system. New ĕles should be created as immediate ĕles (which have the ĕle type value as speciĕed
below), and continue to be immediate ĕles until their contents can no longer ĕt in the inode
itself (by growing to over 60 bytes). When this happens, the ĕle should be transformed into a
regular ĕle and its contents be transferred to data blocks (you will need to allocate these before
transferring). You need to ensure that when this happens the block pointers are updated to be
valid, so further references to the ĕle succeed in accessing the data blocks.

When a ĕle is truncated below 60 bytes, youmust convert the ĕle back into an immediate ĕle
by transferring the contents of its data blocks into the inode structure. Ensure you free any data
blocks used.

You do not have to implement immediate ĕles for special ĕle types (e.g. block device) — you
will not be tested on this.

You cannot modify any code outside of the kernel, and since ĕle types are declared in the
system header ĕle linux/fs.h (search for DT_REG), you must deĕne a new immediate ĕle type
inside your module. Pick a new ĕle type number, and deĕne the type in the form of:

#define DT_IM X

(where X is a unique integer. It is not as simple as picking an unused number; you will need
to do some testing to see what works.)

Ensure that DT_IM is deĕned as speciĕed in one of your source ĕles so the marker can recog-
nise an immediate ĕle duringmarking. It will be automatically extraced so youmay be penalised
if the automated script cannot ĕnd it.

Note: since we will be modifying parts of how the inode structure is represented, the e2fsck

2



tool will probably fail or detect errors when there aren’t any. is is expected behaviour and you
do not need to worry about ĕxing this.

Your ĕle system implementation must still be able to mount existing ext2 ĕle systems created
with the mkfs.ext2 tool, so make sure you do not modify the inode structure itself (do not add
or remove any ĕelds, or change the size of the inode).

Tips

• You can cast the member of the inode structure that stores block pointers to an unsigned

char * and use it as a contiguous piece of memory for storing immediate ĕles in. is way
you do not have to access the pointer ĕelds directly.

• When a ĕle is marked as immediate, you need to ensure no part of the ĕle system attempts
to access the block pointers (since they will effectively contain garbage).

Part B— File encryption
e ext3301 ĕle system must support a very naive encryption scheme. Any ĕles under the
/encrypt directory (if it exists) of a given ext3301 ĕle system need to be encrypted. is will
either occur on disk (if the ĕle is a regular ĕle), or in the inode structure if the ĕle is marked as
immediate. Files outside /encrypt are to remain as plaintext.

Your ĕle system driver must support an extra mount option called key. is speciĕes the
encryption key that will be used during encryption and decryption for the given mount of the
ĕle system. e key will be given in hex format, and you can use sscanf() to parse the option
and extract the key. You should only use the 8 least signiĕcant bits of the key (meaning it can only
be in the range 0x0 to 0xFF). If no key option is speciĕed at mount time, then the encryption key
defaults to 0x0 (which disables encryption) and data should be passed through the ĕle system
as-is.

It is valid to mount a ĕle system with one key, write some data to it, and then remount it with
a different key (even though this would result in garbage when reading).

Moving a ĕle into the /encrypt directory should trigger its contents to be encrypted, and
moving a ĕle outside of this directory should trigger its contents to be decrypted (with whatever
key the ĕle system is mounted with). In Linux, moving a ĕle within the same ĕle system is
implemented using a link and then an unlink on the inode — the data blocks are not moved.

You do not have to handle hard links or symbolic links in this ĕle system.
e encryption algorithm is a simple substitution cipher, where each byte is XORed against

the key:
Encryption: Ci = Pi ⊕ k

Decryption: Pi = Ci ⊕ k

3



(where k is the encryption key given when mounting the ĕle system.) Note that this is a
different encryption algorithm from assignment 2.

You should ensure the key does not get written to disk — it must stay in memory at all times
(so do not store it in the inode).

Interactions between immediate ĕles and encryption
Your ĕle system needs to support the different combinations of both immediate ĕles and ĕle
encryption. For instance it is perfectly valid to have an immediate ĕle that is encrypted (and the
encrypted data needs to be stored in the inode as described above).

Short-response questions
1. Discuss what happens in your implementation if you attempt to create a symbolic link

from:

(a) outside the encrypted directory to a ĕle inside the directory (for instance /foo →
/encrypt/foobar)

(b) inside the encrypted directory to a ĕle outside it (for instance /encrypt/foobar→
/foo)

Explain why each of these either works or does not work, and explain why.

2. Discuss what happens in your implementation if you attempt to create a hard link from:

(a) outside the encrypted directory to a ĕle inside the directory (for instance /foo →
/encrypt/foobar)

(b) inside the encrypted directory to a ĕle outside it (for instance /encrypt/foobar→
/foo)

(c) another ĕle system to a ĕle inside the encrypted directory

Explain why each of these either works or does not work, and explain why.

3. What would happen if you run e2fsck over an ext3301 ĕle system that:

(a) contains only regular ĕles
(b) contains only encrypted ĕles
(c) contains only immediate ĕles

Discuss the behaviour you see and suggest why this happens.

4



Code compilation
Your implementation must compile as a Linux kernel module (with a .ko extension). It must
compile and be loadable on the version of the virtual image provided on the website. See the
kernel module practical for information on Makeĕles for kernel modules.

Your module will be built by running the following in the a3 repository directory:
make

Coding style
Your solutionmust conform to the Linux kernel coding style document available at http://www.
kernel.org/doc/Documentation/CodingStyle (or Documentation/CodingStyle in the ker-
nel source tree). You may wish to run your code through the checkpatch tool to validate that
your solution adheres to the coding style. e following arguments may be useful to you (where
FILE is the C source ĕle you wish to check):

checkpatch --no-tree --no-signoff -f --no-summary FILE

e tool is available to download from the Resources page of the course website. If you down-
load from another source, make sure you use version 0.32 as this is the version we will use when
marking.

You may also ĕnd the indent(1) tool useful with the following arguments:

indent -kr -i8 FILE

Please note that these are tools only— they should not be considered perfect. Always double-
check the results by hand to be sure.

Group work
If you decide to work in groups of two, one member of the group should be chosen to host the
repository and that student should e-mail one of the tutors (or if unavailable the lecturer) no later
than seven days before the due date. Aer this cutoff it will be assumed that you are working
individually and you will be marked as such. Both members of a group will receive the same
mark, and any complaints or problems should be directed to the lecturer who will treat each case
conĕdentially.

e tutors and lecturer’s e-mail addresses can be found on the course website.

5

http://www.kernel.org/doc/Documentation/CodingStyle
http://www.kernel.org/doc/Documentation/CodingStyle


Submission and Version Control
e due date for this assignment is 8pm Friday 26th October 2012. Submission made aer this
time will incur a 10% penalty per day late (weekends are counted as 1 day). Any submissions
more than 4 days late will receive 0 marks. No extensions will be given without supporting doc-
umentation (i.e. medical certiĕcate or family emergency)—should such a situation occur you
should e-mail the course coordinator as soon as possible.

is assignment must be submitted through ITEE’s Subversion system. e repository URL
for this assignment is (where s4123456 is your student number):

https://svn.itee.uq.edu.au/repo/comp3301-s4123456/a3

If you are working in groups of two, only one student should use their repository. When
submitting group membership to the tutor, you should nominate the student that will host the
repository for the group. Permissions will be then set accordingly so you can use your own
account. is means both students will checkout and commit to the same repository.

Submissionswill be retrieved fromyour repositorywhen the ĕnal cutoffdate has been reached.
Your submission time will be taken as the most recent revision in the above repository directory.

You are required to make regular commits to your repository as a demonstration of your
work. Subversion history will be considered in marking. Do not submit your assignment with a
single, large commit. You will be penalised for doing so.

For information regarding ITEE’s Subversion system, see http://student.eait.uq.edu.
au/software/subversion/.

Answers to the short-response questions should be provided in a responses.txt ĕle in the
speciĕed repository directory.

6

https://svn.itee.uq.edu.au/repo/comp3301-s4123456/a3
http://student.eait.uq.edu.au/software/subversion/
http://student.eait.uq.edu.au/software/subversion/


Assessment Criteria

Grade band Immediate ĕles
(40 marks)

File encryption
(30 marks)

Short-response answers
(15 marks)

Coding style and comments
(10 marks)

Version control
(5 marks)

Excellent

Correct implementation of
immediate ĕles with no er-
rors. Clear understanding of
ĕle systems and assignment
concepts.

40

Correct implementation of
ĕle encryption with no errors.
Encryption/decryption is
handled correctly with no
errors.

30

Clear explanations and de-
scriptions of answers given.
No incorrect or misleading ex-
planations. Student clearly
grasps the assignment con-
cepts.

15

Coding style applied consis-
tently and without any error.
Code has meaningful com-
ments where appropriate, with
no complex sections le un-
commented.

10
Evidence of continual progress
through version control his-
tory.

5

Very good

Correct implementation of
immediate ĕles with very few
to no errors. Clear under-
standing of ĕle systems and
assignment concepts, with
only minor issues.

36

32

Correct implementation of ĕle
encryption with very few to no
errors. Encryption/decryption
is handled correctly with only
minor issues.

28

24

Clear explanations and de-
scriptions of answers given.
Very few incorrect or mis-
leading explanations. Student
clearly grasps the assignment
concepts.

13

11

Coding style applied consis-
tently with few errors. Code
has meaningful comments
where appropriate, with
some complex sections le
uncommented.

9

8

Evidence of good progress
through version control
history.

4

Good

Correct implementation of
immediate ĕles with few
errors. Good understanding
of ĕle systems and assignment
concepts, with some issues
present.

28

24

Correct implementation of ĕle
encryption with few errors.
Encryption/decryption is han-
dled with few errors.

22

18

Explanations and descriptions
of answers given. Some in-
correct or misleading answers.
Student has a fair grasp of the
assignment concepts.

10

9

Coding style applied with
some consistency and with
some errors. Code has a
fair amount of meaningful
comments where appropriate,
with some complex sections
le uncommented.

7

6

Evidence of some progress
through version control
history.

3

Satisfactory

Partial implementation of im-
mediate ĕles with some errors.
Basic understanding of ĕle sys-
tems and assignment concepts.

20

Implementation of ĕle encryp-
tion is incomplete with some
errors. Encryption/decryption
has some errors.

15

Some answers given with some
incorrect or misleading an-
swers. Basic explanations
given. Student has a basic
understanding of assignment
concepts.

8

Fair attempt to apply coding
style, but some errors or not
much consistency. A basic
attempt to place meaningful
comments throughout code.

5
Little evidence of progress
through version control
history.

2

Poor

Basic attempt to implement
immediate ĕles but has signiĕ-
cant errors. Little evidence of
an understanding of ĕle sys-
tems and assignment concepts.

16
12
8
4

Basic attempt to implement ĕle
encryption with signiĕcant er-
rors. Encryption/decryption
has major errors and/or is
mostly incomplete.

13
10
7
4

Very few answers given. Many
incorrect or misleading an-
swers. Student has a poor
grasp of assignment concepts.

6
4
2

Basic attempt to apply coding
style, with many errors or no
consistency. Very few mean-
ingful comments in code.

4
3
2
1

Very little to no evidence of
progress through version con-
trol history.

1

Very poor No attempt made to imple-
ment immediate ĕles. 0

No attempt made to imple-
ment ĕle encryption or en-
cryption/decryption.

0 No attempt made at short-
response questions. 0

No attemptmade to apply cod-
ing style standards or com-
ment code.

0
No evidence of progress
through version control
history.

0

Penalty: Comments:

Total mark: /100

7

7


