
eUniversity of Queensland
School of Information Technology and Electrical Engineering

Semester Two, 2012

COMP3301/COMP7308
Assignment 2 — Encrypting device driver

Due: 8pm Friday 21st 28th September 2012
Weighting: 25% for COMP3301 students (100 marks total)

Version 1.1 — 19 September 2012
See Changelog at bottom for details

Introduction
e goal of this assignment is to give you practical experience writing a device driver for Linux,
and to learn how kernel modules are a useful and powerful way of implementing operating sys-
tems concepts.

As part of the assessment you must also answer some short–response questions that will test
your understanding of the concepts that you have implemented.

Youwill complete this assignment on the virtual machine image provided on the course web-
site. More information on this image is available under the Resources page.

is assignment may be completed individually or in self-selected groups of two. Please
read the section on group work if you decide to work in groups of two. Although you may share
code with your team member (if working in groups of two), it is still considered cheating to look
at another student’s code or allow your code to be seen or copied by anyone but your partner.
You should be aware that all code submitted may be subject to automated checks by plagiarism-
detection soware. You should read and understand the school’s policy on student misconduct,
which is available in the course proĕle.

Overview
e assignment is to create a Linux device driver interface to an encryption coprocessor. You
will be provided with a pseudo-hardware device in the form of a kernel module that you will use
to perform the cryptography computations. e encryption scheme that the device implements
is RC4.

1



It is highly recommended you complete the twopracticals surrounding this assignment (Hello
kernel world and character device drivers) before attempting this assignment.

e architecture of the driver that you must implement is as follows:
• e device node is located at /dev/crypto.
• Aer opening the device, processes use ioctl() calls to create or attach to one or more

encryption buffers, and to initialise the encryption coprocessor.
• Once a ĕle descriptor is attached to a buffer, read() and write() operations are used

to send and receive plaintext/ciphertext to and from the device. You will perform crypto
operations on the encryption coprocessor via its API.

• e mmap() operation is supported so that processes may inspect a buffer’s contents di-
rectly.

• Aer completing the cryptography operations, the process detaches from and/or destroys
the buffers using ioctl() calls, before ĕnally closing the ĕle descriptor.

Device registration
When loaded, your device driver must register itself with major number 250 using the dynamic
allocation method described in the Linux Device Drivers, 3rd edition book, chapter 3 (available
from http://lwn.net/images/pdf/LDD3/ch03.pdf). eminor number should be automat-
ically assigned by the kernel. Do not use the “older way” (register_chrdev()) — you will lose
marks if you do.

Aer registration, your driver must print out its assigned major and minor number to the
kernel’s ring buffer in the following format (KERN_INFO is sufficient):

crypto: major=MAJOR, minor=MINOR

(where MAJOR is the assigned major number and MINOR is the assigned minor number.) For
example:

crypto: major=250, minor=0

You should ensure when the driver is unloaded it unregisters itself and cleans up anymemory
it had allocated during operation. Your driver should not leak any memory.

File operations
A skeleton fops struct has been deĕned for you in a2-fops.c and a2-fops.h (both available on the
course website). You should use this as a basis for writing your module. All of the callbacks in
the structure need to be implemented.

2

http://lwn.net/images/pdf/LDD3/ch03.pdf


Buffers
e device uses buffers internally to store the data received through a write(2) system call.
Initially, the device has no buffers allocated; to use the device a process must make an ioctl call
to create at least one buffer (see below for details on all of the ioctl calls).

Each buffer has a unique identiĕer represented by an unsigned integer. Identiĕers are to start
at 1 and be incremented every time a new buffer is created. Identiĕers may be reused, however it
is up to you to guarantee uniqueness across all buffers that exist in the driver at any given time.

Before reading and writing to a buffer, a ĕle descriptor must attach to it through an ioctl call.
A buffer must be explicitly created but can be deleted in one of two ways: either an explicit

ioctl call to destroy the buffer, or when there are no ĕle descriptors remaining attached to the
buffer. is means that you will need to implement simple reference counting to ensure buffers
are removed when the last ĕle descriptor detaches from it. is automatic deletion procedure
should be run whenever a buffer is detached from.

Due to this behaviour, when creating a buffer the driver should transparently attach the ĕle
descriptor to that buffer, to prevent it from being removed at the next removal point.

Each buffer has a ĕxed-size of 8,192 bytes (8K) and can be read and written to independently
of each other. is means that each buffer has two variables associated with it: a read offset and
a write offset, and has ĕrst-in, ĕrst-out semantics. ese ‘pointers’ determine where the next
read and write calls (respectively) will operate from. Writing past the end of the buffer should
wrap around to the start, but attempting to write past the current read pointer should fail with
-ENOBUFS cause an incomplete write to occur (that is, as many bytes as possible are copied up to
the read pointer, and this number of bytes is returned to the user-space write(2) call).

A buffer may have at most one reader and one writer attached to it at any given time, which
may be from the same ĕle descriptor opened for both reading and writing, or two ĕle descrip-
tors, one opened for reading and the other for writing. Whether a ĕle descriptor is a reader or
writer (or both) is speciĕed by its user-space access mode to open(2) (there are complimentary
deĕnitions inside the kernel that match these modes, see the linux/fs.h header ĕle):

User-space access mode Meaning

O_RDONLY reader
O_WRONLY writer
O_RDWR reader and writer

is restrictionmust be enforced when attempting to attach to a buffer, and an error returned
if there is already a reader or writer attached (depending on the mode). More on this behaviour
is described in the ioctl.h ĕle.

3



Encryption coprocessor
Youhave beenprovidedwith an encryption coprocessor in the formof a kernelmodule (cryptodev).
It provides an API that you are able to call into to perform cryptographic functions as needed.
More information on this device is available in the cyrptodev-1.0.tar.gz archive that you
may download off the course website.

Encryption
Each open ĕle descriptor must support a settable encryption mode. is mode speciĕes to the
driver when it should encrypt (and decrypt) data being passed through it, and on which call
(read/write). e mode can be speciĕed through the CRYPTO_IOCSMODE ioctl call (speciĕed be-
low). is call also allows the key to be set. e key has a maximum size of 255 bytes (plus
terminating null character) and can be made up of any ASCII characters.

For instance a process may set its write calls to encrypt, and its read calls to decrypt. is
behaviour would assert that the driver is successfully encrypting and decrypting the data given.
Alternatively, the process may just set the mode on one of the read/write operations, and leave
the other unset (this is called passthrough).

Using the device
You must implement the following ĕle operations in the device driver:

open

Opening the device will set up any data structures required to store the state for this ĕle descrip-
tor. Reader/writer restrictions should be enforced in this operation.

close

Closing the device will detach from a buffer (if one is attached to) and clean up any memory
used by that ĕle descriptor. If the ĕle descriptor was attached to a buffer, and this was the ĕnal
reference to that buffer, it should be destroyed.

read

A read call can only be made if the ĕle descriptor is already attached to a buffer. If it is, the driver
must attempt to copy the requested bytes from the buffer into the user-space process, applying
whichever encryption mode is set on the ĕle descriptor. For instance, if the ĕle is set to decrypt

4



on read, then all data being copied from the buffer should be decrypted, and the plaintext is
transferred to the process.

If the read mode has not been set at the time of the call, then the driver should act as if it
were set to passthrough, and return the raw data from the buffer (regardless of whether or not it
is encrypted).

You must implement blocking I/O for your read calls.

write

Awrite call can only bemade if the ĕle descriptor is already attached to a buffer. If it is, the driver
must attempt to copy the data given into the attached buffer, applying whichever encryption
mode is set on the ĕle descriptor. For instance, if the ĕle is set to encrypt on write, then all data
being written to the buffer should be encrypted, and the ciphertext stored in the buffer.

If the write mode has not been set at the time of the call, then the driver should act is it it
were set to passthrough, and place the raw data in the buffer (regardless of whether or not it is
encrypted).

-ENOBUFS should never be returned from a write call.

mmap

You must also implement an mmap() ĕle operation in the device driver that allows a user-space
process to request a pointer into the buffer it is attached to. If the ĕle descriptor passed through
the mmap() call is not attached to a buffer, the driver should return -EOPNOTSUPP. Attempting to
map any size that is not page-aligned or a size greater than themaximumbuffer length is an error
and the driver should return -EIO. is means that the only valid mapping sizes that a process
can request are 4K and 8K.

Otherwise, the driver must attempt to map the buffer into the user-space process’ virtual
address space. If the user-space process requests a speciĕc offset this must be obeyed (provid-
ing it is page-aligned and does not exceed the size of a buffer, or -EIO should be returned). If
PROT_WRITE is not speciĕed by the user-space program in the protocol ĕeld, then a read-only
mapping should be created. In this case, the virtual memory area being mapped should be pro-
tected from writes so the user-space process faults if it attempts to do so.

For the purposes of this assignment youmay ignore the Ęags ĕeld to mmap(2) and your device
driver does not have to implement this.

5



ioctl calls
e device driver is to be controlled through various ioctl calls. ese are listed below for ref-
erence. A more detailed description and examples on each ioctl is provided in the ioctl.h ĕle,
available on the course website.

ioctl Description Arguments Returns

CRYPTO_IOCCREATE Creates a new buffer None Buffer id or error
CRYPTO_IOCTDELETE Deletes an existing

buffer
Buffer id 0 on success or error

CRYPTO_IOCTATTACH Attaches to an existing
buffer

Buffer id 0 on success or error

CRYPTO_IOCDETACH Detaches from the al-
ready attached buffer

None 0 on success or error

CRYPTO_IOCSMODE Set the mode of subse-
quent read/write calls

struct crypto_smode * 0 on success or error

Note that the ioctl deĕnitions have been deĕned for you in ioctl.h. You should use this
header ĕle when creating your device driver and test programs. Please do not modify this ĕle —
a clean copy will be used during marking and any changes you have made will be discarded. If
your implementation relies on any changes made then you may be penalised.

Return codes
Each of the ĕle operations and ioctl calls listed above must return one of the following status
codes (unless otherwise described):

Value Meaning

0 Success
-ENOMEM Not enough memory to satisfy the request
-EINVAL An argument given was invalid
-EALREADY A ĕle descriptor is already attached as a reader or writer
-EOPNOTSUPP e operation cannot occur when not attached to a buffer
-EIO mmap() size is not page-aligned or has an invalid size, or the offset is invalid

6



Test program
As part of the assignment, you must create a test program (written in C) that demonstrates your
implementation of the device driver. e test program should be placed in a a2/test sub-directory
in your repositorywith aMakeĕle that can produce the binary speciĕed below. Your test program
will be tested against both your implementation of the device driver, and a reference implemen-
tation. Note that the test program does not test the entire driver speciĕcation.

e test program shall be called echat and is a simple chat program that uses an encrypted
IPC pipe (via the encrypted device created in the assignment). Since it is modelled on a pipe, it
can only have two chat users. Both will open the test program on the same machine, but with
different arguments. e ĕrst chat user will open the programwith one argument (this will create
the buffers required for chatting) and the second chat user will open the program with three
arguments (which will attach to the buffers speciĕed). Your program should output a sensible
usage message and exit with status 1 if the number of arguments given is less or more than what
is speciĕed above.

You should ensure that you only open the device with the mode required for each ĕle de-
scriptor. No ĕle descriptor in the test program should have the device open for both reading and
writing at once.

You may assume that the device exists at /dev/crypto and you may hardcode this into your
test program.

First chat user

Usage: echat encryption_key

When run with a single argument, the program should open the device twice (once for read-
ing, once for writing) and create two buffers, one for each ĕle descriptor (we will call these the
ĕrst buffer and the second buffer). e buffer identiĕers should be printed on standard error in
the following format:

first_buffer_id: X, second_buffer_id: Y

(where X and Y are the respective identiĕers.)
e ĕrst buffer is used for text being sent from the ĕrst user to the second user, and the second

buffer is used for text being sent from the second user to the ĕrst user.
e encryption mode should be set accordingly as per the argument given and the read/

write direction required. Aer setting up the buffers, the program should wait for inputs as per
the Chat behaviour section, below.

7



Second chat user

Usage: echat encryption_key first_buffer_id second_buffer_id

When run with three arguments, the program acts as the second chat user and attaches to
the buffers given. Aer attaching to the buffers, the program should wait for inputs as per the
Chat behaviour section, below.

Chat behaviour

e program should spawn two threads (using pthreads) and wait for input lines (terminated by
a newline) on both standard in and the user’s respective directional buffer (read from the ĕrst
buffer for the second chat user; read from the second buffer for the ĕrst chat user).

When an input line is read on standard in, it should be written to the other buffer (write to
the second buffer for the second chat user; write to the ĕrst buffer for the ĕrst chat user).

When an input line is read from the respective directional buffer (see above), it should be
printed to standard out.

You should be able to type text in the ĕrst invocation of the program and have it appear on
standard out of the second invocation, and vice versa.

End-of-ĕle handling

If an end-of-ĕle (EOF) condition is detected, your program should close the device and exit with
status 0. An end-of-ĕle condition is detectable by the read system call returning 0 (which will in
turn cause fgets(3) to return NULL, if you are using it). is occurs when there is nomore input
available from the given input stream (for instance, standard in). You can test this in echat by
typing ^D in a terminal (Control + D). is will cause your program to read EOF from standard
in and it should exit as speciĕed. If standard in is redirected from a ĕle, the same behaviour
should occur.

8



Tips
• edrivermust not leakmemorywhile running, andmust clean up allmemory usedwhen

unloaded.
• It is recommended you split your implementation across multiple C source ĕles.
• Be aware of allocating large local variables or buffers. You are operating in the kernel and

have very limited stack space available to you.
• A linked-list may be useful in representing the buffers in the kernel. e kernel provides

a linked-list implementation you may wish to use. See the Resources page on the course
website for details.

Short-response questions
1. Why are ioctl calls required as opposed to implementing their functionality in read/write

functions?

2. What is the difference between using kmalloc and vmalloc in kernel land? How would
this effect your device driver? Justify your answer with regards to your implementation
and how it would differ if you changed from kmalloc to vmalloc (or vice versa).

3. Discuss the effects of fork and the dup family of system calls on your device driver. Some
things to consider are what happens to buffer reference counting, whether or not the two
processes share the same attached buffer, what happens when one closes the device, etc.
Youmaywish to write a program that does this and use its behaviour to justify your answer
(you do not need to submit any program written for this question).

Code compilation
Your implementation must compile as a Linux kernel module (with a .ko extension). It must
compile and be loadable on the version of the virtual image provided on the website. See the
kernel module practical for information on Makeĕles for kernel modules.

Your module will be built by running the following in the a2 repository directory:
make

e test program will be built by entering into the a2/test subdirectory and running:
make

You should ensure that the echat binary is created with the -Wall -std=gnu99 compiler
Ęags.

9



Coding style
Your solutionmust conform to the Linux kernel coding style document available at http://www.
kernel.org/doc/Documentation/CodingStyle (or Documentation/CodingStyle in the ker-
nel source tree). You may wish to run your code through the checkpatch tool to validate that
your solution adheres to the coding style. e following arguments may be useful to you (where
FILE is the C source ĕle you wish to check):

checkpatch --no-tree --no-signoff -f --no-summary FILE

e tool is available to download from the Resources page of the course website. If you down-
load from another source, make sure you use version 0.32 as this is the version we will use when
marking.

You may also ĕnd the indent(1) tool useful with the following arguments:

indent -kr -i8 FILE

Please note that these are tools only— they should not be considered perfect. Always double-
check the results by hand to be sure.

Group work
If you decide to work in groups of two, one member of the group should be chosen to host the
repository and that student should e-mail one of the tutors (or if unavailable the lecturer) no later
than seven days before the due date. Aer this cutoff it will be assumed that you are working
individually and you will be marked as such. Both members of a group will receive the same
mark, and any complaints or problems should be directed to the lecturer who will treat each case
conĕdentially.

e tutors and lecturer’s e-mail addresses can be found on the course website.

Submission and Version Control
e due date for this assignment is 8pm Friday 21st 28th September 2012. Submission made
aer this timewill incur a 10%penalty per day late (weekends are counted as 1 day). Any submis-
sions more than 4 days late will receive 0 marks. No extensions will be given without supporting
documentation (i.e. medical certiĕcate or family emergency)—should such a situation occur
you should e-mail the course coordinator as soon as possible.

is assignment must be submitted through ITEE’s Subversion system. e repository URL
for this assignment is (where s4123456 is your student number):

10

http://www.kernel.org/doc/Documentation/CodingStyle
http://www.kernel.org/doc/Documentation/CodingStyle


https://svn.itee.uq.edu.au/repo/comp3301-s4123456/a2

If you are working in groups of two, only one student should use their repository. When
submitting group membership to the tutor, you should nominate the student that will host the
repository for the group. Permissions will be then set accordingly so you can use your own
account. is means both students will checkout and commit to the same repository.

Submissionswill be retrieved fromyour repositorywhen the ĕnal cutoffdate has been reached.
Your submission time will be taken as the most recent revision in the above repository directory.

You are required to make regular commits to your repository as a demonstration of your
work. Subversion history will be considered in marking. Do not submit your assignment with a
single, large commit. You will be penalised for doing so.

For information regarding ITEE’s Subversion system, see http://student.eait.uq.edu.
au/software/subversion/.

Answers to the short-response questions should be provided in a responses.txt ĕle in the
speciĕed repository directory.

11

https://svn.itee.uq.edu.au/repo/comp3301-s4123456/a2
http://student.eait.uq.edu.au/software/subversion/
http://student.eait.uq.edu.au/software/subversion/


Assessment Criteria

Grade band Kernel module and fops
(40 marks)

Buffer handling and encryption
(30 marks)

Short-response answers
(15 marks)

Coding style and comments
(10 marks)

Version control
(5 marks)

Excellent

Correct implementation of
kernel module and fops with
no errors. Clear understand-
ing of device drivers and
kernel concepts.

40

Correct implementation
of buffers with no errors.
Encryption/decryption is
handled correctly with no
errors.

30

Clear explanations and de-
scriptions of answers given.
No incorrect or misleading ex-
planations. Student clearly
grasps the assignment con-
cepts.

15

Coding style applied consis-
tently and without any error.
Code has meaningful com-
ments where appropriate, with
no complex sections le un-
commented.

10
Evidence of continual progress
through version control his-
tory.

5

Very good

Correct implementation of
kernel module and fops with
very few to no errors. Clear
understanding of device
drivers and kernel concepts,
with only minor issues.

36

32

Correct implementation of
buffers with very few to no
errors. Encryption/decryption
is handled correctly with only
minor issues.

28

24

Clear explanations and de-
scriptions of answers given.
Very few incorrect or mis-
leading explanations. Student
clearly grasps the assignment
concepts.

13

11

Coding style applied consis-
tently with few errors. Code
has meaningful comments
where appropriate, with
some complex sections le
uncommented.

9

8

Evidence of good progress
through version control
history.

4

Good

Correct implementation of
kernel module and fops with
few errors. Good under-
standing of device drivers and
kernel concepts, with some
issues present.

28

24

Correct implementation
of buffers with few errors.
Encryption/decryption is
handled with few errors.

22

18

Explanations and descriptions
of answers given. Some in-
correct or misleading answers.
Student has a fair grasp of the
assignment concepts.

10

9

Coding style applied with
some consistency and with
some errors. Code has a
fair amount of meaningful
comments where appropriate,
with some complex sections
le uncommented.

7

6

Evidence of some progress
through version control
history.

3

Satisfactory

Partial implementation of ker-
nelmodule and fopswith some
errors. Basic understanding of
device drivers and kernel con-
cepts.

20

Implementation of buffers is
incomplete with some errors.
Encryption/decryption has
some errors.

15

Some answers given with some
incorrect or misleading an-
swers. Basic explanations
given. Student has a basic
understanding of assignment
concepts.

8

Fair attempt to apply coding
style, but some errors or not
much consistency. A basic
attempt to place meaningful
comments throughout code.

5
Little evidence of progress
through version control
history.

2

Poor

Basic attempt to implement
kernel module and fops but
has signiĕcant errors. Little
evidence of an understanding
of device drivers and concepts.

16
12
8
4

Basic attempt to implement
buffers with signiĕcant errors.
Encryption/decryption has
major errors and/or is mostly
incomplete.

13
10
7
4

Very few answers given. Many
incorrect or misleading an-
swers. Student has a poor
grasp of assignment concepts.

6
4
2

Basic attempt to apply coding
style, with many errors or no
consistency. Very few mean-
ingful comments in code.

4
3
2
1

Very little to no evidence of
progress through version con-
trol history.

1

Very poor No attempt made to imple-
ment kernel module or fops. 0

No attempt made to imple-
ment buffers or encryption/
decryption.

0 No attempt made at short-
response questions. 0

No attemptmade to apply cod-
ing style standards or com-
ment code.

0
No evidence of progress
through version control
history.

0

Penalty: Comments:

Total mark: /100

12

12



Changelog
v1.0 — 27 August 2012

1. Initial version

v1.1 — 19 September 2012

ioctl.h changes:
1. Updated to ioctl-1.1.h — please download new version from course website
2. Added missing include so it can be used in user-space without modiĕcation
3. Fixed typo in comments of how to use the key
4. Return -EOPNOTSUPP if already attached to buffer when issuing a CRYPTO_IOCCREATE call

Speciĕcation changes:
1. Extended due date to 8pm Friday 28th September 2012
2. Clariĕed that reader/writer restrictions are to be enforced during CRYPTO_IOCATTACH, not

device_open()

3. You must implement blocking I/O for read calls
4. Clariĕed that incomplete writes are possible, and that -ENOBUFS should never be returned

from a write call

13


