
eUniversity of Queensland
School of Information Technology and Electrical Engineering

Semester Two, 2012

COMP3301/COMP7308
Assignment 1 —User-space scheduler

Due: 8pm on Friday 24th August 2012
Weighting: 25% for COMP3301 students (100 marks total)

Version 1.1 — 15 August 2012
See Changelog at bottom for details

Introduction
e goal of this assignment is to give you a practical knowledge of operating system schedulers
and the experience in modifying them in a deĕned way.

As part of the assessment you must also answer some short–response questions that will test
your understanding of the concepts that you have implemented.

You will complete this assignment on the student Linux server, moss. More information on
this server is available from http://student.eait.uq.edu.au/infrastructure/remote-access/.

is assignment may be completed individually or in self-selected groups of two. Please
read the section on group work if you decide to work in groups of two. Although you may share
code with your team member (if working in groups of two), it is still considered cheating to look
at another student’s code or allow your code to be seen or copied. You should be aware that
all code submitted may be subject to automated checks by plagiarism-detection soware. You
should read and understand the school’s policy on student misconduct, which is available in the
course proĕle.

Pth—GNU Portablereads
Pth is a portable userland threading library that can be linked against to provide threading capa-
bilities to a process. You should be familiar with this library from the practicals. It is suggested
you review these before starting the assignment.

e default Pth scheduler operates in a cooperative manner — threads must yield the CPU
for other threads to run. Pth has been modiĕed for you to include a preemptive scheduler, that

1

http://student.eait.uq.edu.au/infrastructure/remote-access/


can interrupt a thread if it runs longer than the ĕxed scheduling quantum. All further references
to Pth refer to this preemptive version, and you will complete this assignment using that version.
You may download Preemptive Pth from the course website. Do not download from any other
source, as this will be the unmodiĕed version.

Scheduling behaviour
e current Pth scheduler implements a round-robin algorithm where each thread is given a
time slice to run in turn. If the thread does not yield by the end of this ĕxed time slice then it is
preempted, and the next ready thread is run. It does not provide any mechanism for a thread to
specify a deadline.

Your task is to modify the Pth scheduler to implement the earliest deadline ĕrst scheduling
algorithm. You should be familiar with this algorithm from lectures, so refer to the correspond-
ing lecture notes if you need more information. e new algorithm will replace the current
round-robin one.

readswill specify their deadline on creation through twonewattributes: PTH_ATTR_DEADLINE_C
(execution time) and PTH_ATTR_DEADLINE_T (period). Both deadlines are strictly positive inte-
ger multiples of the time slice (that is, both are strictly> 0). Youmust create these new attributes
and expose them through pth.h (hint: do not add these directly to pth.h as this is automatically
generated). Ensure you can set and get the attributes from a test program. For instance, a thread
may specify its deadline as follows:

PTH_ATTR_DEADLINE_C= 1

PTH_ATTR_DEADLINE_T= 5

e above example means that a thread has a deadline of once every 5 time slices.
New threads should inherit the deadlines of their parent threads, but may be overridden by

calls to pth_attr_set(). If not speciĕed (and not inherited), the attributes should default to
the following:

PTH_ATTR_DEADLINE_C 1

PTH_ATTR_DEADLINE_T 10

When creating a thread, the scheduler should validate the deadline attributes and see if the
system is still schedulable with the addition of the new thread. If either of these conditions fail,
the scheduler must deny the thread’s creation (by returning the error speciĕed below). You do
not have to handle the case where a thread’s deadline is not an integer multiple of the time slice.
Recall that the schedulability test of earliest deadline ĕrst is:

2



n∑
i=1

Ci

Ti

≤ 1

On each scheduling decision, the thread with the earliest deadline should be run. If a clear
decision cannot be made, the system should enter a tie break as follows:

1. If one of the tied threads ran in the last scheduling period, continue running it (see ĕgure
1 for an example)

2. If neither thread ran in the last scheduling period, pick the oldest thread (oldest is deĕned
as having being created before the other)

Once a thread has reached its deadline, it should be removed from consideration until the
next multiple of its deadline is reached. For instance a thread specifying a deadline of once every
5 seconds will be runnable at t = 0, t = 500, t = 1000 t = 5000, t = 10000, etc. (where t is in
milliseconds.)

For simplicity, if a thread yields via pth_yield() or otherwise makes a call into Pth’s POSIX
replacement library (e.g. write(2)), you can consider it ĕnished for the current scheduling slice
and the scheduler should enter an idle loop until the next scheduling slice.

You should ensure that you do not disrupt Pth’s event handlingmechanism or its queueman-
agement functions (such as moving a thread between priority queues).

Sample thread system
e following sample thread system are provided so you can visualise the concepts and behaviour
speciĕed. Note that it is a simpliĕed and contrived example. e scheduling period is shown
as 1 second, whereas the Pth period is 100 ms.

read creation errors
Some additional errors may be returned if a new thread cannot be created. ese should be
returned via the pth_error function.

errno code Reason for error

ERANGE if PTH_ATTR_DEADLINE_C> PTH_ATTR_DEADLINE_T

EAGAIN if schedulability test fails

3



t (seconds)
0 1 2 3 4 5 6 7 8 9 10

 read A

(1/5)

 read B

(2/10)

 read C

(3/8)

A = 1/5

B = 2/10

C = 3/8

B = 2/10

C = 3/8

B = 2/10

C = 2/8

B = 2/10

C = 1/8

B = 2/10

A = 1/5

B = 1/10

A = 1/5

C =3/8 C =3/8

etc.

tie break,

rule 1

no threads are

schedulable

Figure 1: Sample thread system where scheduling period is 1 second

Scheduling logging
As part of the assignment, you must also modify the Pth scheduler to output a log ĕle with infor-
mation on each thread’s running time, as shown below. e output must be exactly as described
as it will be automaticallymarked. is logging will give a visual representation of the scheduling
decisions your scheduler is making, such as the order in which threads are picked, and how long
they run for. It may be useful to start the assignment with this logging.

e behaviour of this logging is as follows:
On initialisation, the scheduler shall open a ĕle called sched.log in the current working

directory. If an existing ĕle by this name exists, it should be overridden. Any errors in opening
the ĕle (such as permissions) should cause the initialisation to fail and a descriptive error to be
printed to standard error (consider using perror(3)). Each time a user-created thread is created,
a header row will be written to the ĕle in the following format (followed by a newline):

t Ti Ti+1 … Tn

where Ti is the name of the ĕrst user-created thread, Ti+1 is each consecutive thread (if any),
up to the last thread, Tn. Each column should be padded to 8 spaces, with at least one space
between each (you may wish to consider using the printf padding speciĕer for this). erefore
if a thread name is longer than 7 characters, it should be truncated (7 visible characters and 1
space make up each column heading). ere should be no leading or trailing spaces on any line,
nor should there be any blank lines. e order of columns should be in order of thread creation,
and should never change order. Do not include the scheduler or main threads. For example, a
valid header row may be:

4



t nice greedy

Every time a new user-created thread is created, the header row should be updated and writ-
ten to the ĕle again. For example, adding a new thread to the above example may cause the
following header row to be written:

t nice greedy greedy2

If multiple threads are created before any run, then multiple header rows will be present in
the log ĕle.

For every scheduling decision, the time since epoch (rounded to the nearest whole millisec-
ond) of when the thread started running should be written in the ĕrst column (under t), padded
to 8 spaces. Note that this means if a thread yields in under 1 millisecond, the start time of it and
the next threadwill be the same. is is expected behaviour. For the purposes of this assignment,
the epoch should be ĕxed to when the ĕrst user-created thread begins running.

ree + characters should then be written in the corresponding column for the thread that
just ran, directly followed by a P if the thread was preempted, or a Y if the thread yielded. See
above at the bottom of the “Scheduling behaviour” section for information on threads yielding.

If no thread ran in the given period (see Figure 1 at t = 7 for instance), the written line should
only contain the time since epoch.

You will need to make sure you insert enough padding so the ĕrst character of the + lines
up with the ĕrst character of the thread’s name in the header row. For example, assuming the
threads in the above example were all started in the main function, a possible log ĕle output may
be:

t nice greedy greedy2

0 +++Y

0 +++P

100 +++P

200 +++P

300 +++P

400 +++Y

t nice greedy greedy2 greedy3

400 +++P

is output (assumed complete) reveals the following about the test program:

• e order of running was: nice, greedy, greedy2, greedy, greedy2 and nice

5



• e nice thread yielded cooperatively back to the scheduler in under 1 millisecond

• e greedy threads were preempted aer 100 milliseconds each, which reveals that the
scheduling time slice is set to 100 milliseconds

• e nice thread was either waiting on an event or sleeping for at least 1 second

• At approximately 400 milliseconds since program start a new thread greedy3 was created

• e program exited aer the greedy3 thread was preempted, which based on previous
observations can be computed to half a second aer the ĕrst thread was run

• e scheduler used to produce these outputs implements the round-robin algorithm, not
the algorithm speciĕed in this assignment

You should try to print log outputs as “close” to scheduling decisions as possible to ensure
scheduling overhead does not creep into the time column (for instance if the scheduler spends
5 milliseconds doing housekeeping aer a thread returns but before writing to the log ĕle, you
should ensure this 5 milliseconds isn’t included in the time column).

It is expected that you may see some small dri in the times for a long running program due
to factors outside of your control, however each time slice should always be 100 milliseconds.
Acceptable dri between each thread is in the range of ±5 milliseconds. If you are unsure if the
dri in your system is acceptable, please demonstrate your system to a tutor.

More examples of valid log outputs will be made available on the course website in due time
(though the code used to produce them will not be). Some example log outputs are available
on the course website. Please note they are contrived examples and do not necessarily show a
complete solution.

Short-response questions
1. What is the practical difference between earliest-deadline ĕrst and ratemonotonic schedul-

ing? Consider utilisation, schedulability, etc.

2. For simplicity, this assignment speciĕes that if a thread yields or makes a blocking system
call, the scheduler should idle until the next scheduling slice. Explain why this is undesir-
able in real systems, and propose a solution that could be implemented into the Pth library
to remedy this.

3. Show a sample system of threads that is not schedulable, and explain why not and how this
could be ĕxed. Make sure you show each thread’s deadlines in a table.

6



4. Show a sample system of threads that is schedulable in earliest-deadline ĕrst, but not in
rate-monotonic scheduling (if any). Explain your answer.

Code compilation
As the Pth source tree already contains a configure script and a Makefile to compile the library,
you do not need to provide any additional build infrastructure. Yourmodiĕcationsmust compile
with the vanilla Pth Makeĕle system with the exception of editing Makefile.in to add new
source ĕles.

To mark your modiĕed source, your assignment subdirectory will be checked out from Sub-
version on moss, and the latest version of the build-pth.sh script (as provided on the course
website)will be run in your a1 subdirectory (one up from thePth source directory you imported),
as follows:
./build-pth.sh

Note that it willnotbe built with debugging support. Formore information on the build-path.sh
script, see the Pth practicals.

Please ensure your assignment compiles successfully using the build script before submitting.
If the marker cannot mark your assignment due to compilation errors, they may attempt to

ĕx the problem at their own discretion. A penalty of up to 10marks may be applied if the marker
has to modify your code in any way.

Coding style
Your modiĕcations should follow the existing style of the Pth source code around your code. We
are aware that there are inconsistencies in the Pth source — you do not need to reformat any
existing code.

Group work
If you decide to work in groups of two, onemember of the group should e-mail one of the tutors
(or if unavailable the lecturer) no later than seven days before the due date. Aer this cutoff it
will be assumed that you areworking individually and youwill bemarked as such. Bothmembers
of a group will receive the same mark, and any complaints or problems should be directed to the
lecturer who will treat each case conĕdentially.

e tutors and lecturer’s e-mail addresses can be found on the course website.

7



Submission and Version Control
e due date for this assignment is 8pm on Friday 24th August 2012. Submission made aer
this time will incur a 10% penalty per day late (weekends are counted as 1 day). Any submissions
more than 4 days late will receive 0 marks. No extensions will be given without supporting doc-
umentation (i.e. medical certiĕcate or family emergency)—should such a situation occur you
should e-mail the course coordinator as soon as possible.

is assignment must be submitted through ITEE’s Subversion system. e repository URL
for this assignment is (where s4123456 is your student number):

https://svn.itee.uq.edu.au/repo/comp3301-s4123456/a1

If you are working in groups of two, only one student should use their repository. When
submitting group membership to the tutor, you should nominate the student that will host the
repository for the group. Permissions will be then set accordingly so you can use your own
account. is means both students will checkout and commit to the same repository.

Before starting this assignment you should import the Pth source tree into a pth-2.0.7-preempt
subdirectory in the above repository URL. is can be done with the svn import command, for
example:

svn import pth-2.0.7-preempt \

https://svn.itee.uq.edu.au/repo/comp3301-s4123456/a1/pth-2.0.7-preempt

Please do not commit a compiled copy of the source tree as it can be very large. Note that
aer importing, you will need to update your working copy to download the source tree from
the server.

Submissionswill be retrieved from your repositorywhen the due date has been reached. Your
submission time will be taken as the most recent revision in the above repository directory.

You are required to make regular commits to your repository as a demonstration of your
work. Subversion history will be considered in marking. Do not submit your assignment with a
single, large commit. You will be penalised for doing so.

For information regarding ITEE’s Subversion system, see http://student.eait.uq.edu.
au/software/subversion/.

Answers to the short-response questions should be provided in a responses.txt ĕle in the
speciĕed repository directory (not the pth-2.0.7-preempt subdirectory).

Please ensure your solution builds and runs on moss, as this is where it will be marked.

8

https://svn.itee.uq.edu.au/repo/comp3301-s4123456/a1
http://student.eait.uq.edu.au/software/subversion/
http://student.eait.uq.edu.au/software/subversion/


Assessment Criteria

Grade band Scheduler modiĕcations
(40 marks)

Scheduler logging
(25 marks)

Short-response answers
(20 marks)

Coding style and comments
(10 marks)

Version control
(5 marks)

Excellent

Correct implementation of
scheduling algorithm with no
errors. Clear understanding of
scheduler concepts.

40

Scheduler log ĕle created and
populated correctly when test
program is run. Output vali-
dates scheduler modiĕcations
as correct.

25

Clear explanations and de-
scriptions of answers given.
No incorrect or misleading ex-
planations. Student clearly
grasps the assignment con-
cepts.

20

Coding style applied consis-
tently and without any error.
Code has meaningful com-
ments where appropriate, with
no complex sections le un-
commented.

10
Evidence of continual progress
through version control his-
tory.

5

Very good

Correct implementation of
scheduling algorithm with
very few to no errors. Clear
understanding of scheduler
concepts, with only minor
issues.

36

32

Scheduler log ĕle created and
populated with few to no er-
rors when test program is
run. Output validates sched-
uler modiĕcations as correct.

23

20

Clear explanations and de-
scriptions of answers given.
Very few incorrect or mis-
leading explanations. Student
clearly grasps the assignment
concepts.

18

16

Coding style applied consis-
tently with few errors. Code
has meaningful comments
where appropriate, with
some complex sections le
uncommented.

9

8

Evidence of good progress
through version control
history.

4

Good

Correct implementation of
scheduling algorithm with few
errors. Good understanding
of scheduler concepts, with
some issues present.

28

24

Scheduler log ĕle created
and populated with few er-
rors. Output mostly validates
scheduler modiĕcations.

18

15

Explanations and descriptions
of answers given. Some in-
correct or misleading answers.
Student has a fair grasp of the
assignment concepts.

14

12

Coding style applied with
some consistency and with
some errors. Code has a
fair amount of meaningful
comments where appropriate,
with some complex sections
le uncommented.

7

6

Evidence of some progress
through version control
history.

3

Satisfactory

Partial implementation of
scheduling algorithm with
some errors. Basic un-
derstanding of scheduler
concepts.

20

Scheduler log ĕle created and
populated with errors. Out-
put cannot be used to validate
scheduler modiĕcations.

12

Some answers given with some
incorrect or misleading an-
swers. Basic explanations
given. Student has a basic
understanding of assignment
concepts.

10

Fair attempt to apply coding
style, but some errors or not
much consistency. A basic
attempt to place meaningful
comments throughout code.

5
Little evidence of progress
through version control
history.

2

Poor

Basic attempt to implement
scheduling algorithm but has
signiĕcant errors. Little evi-
dence of an understanding of
scheduler concepts.

16
12
8
4

Scheduler log ĕle created but
not populated, or populated
withmany errors. Output does
not correspond to scheduler
modiĕcations.

9
7
5
3

Very few answers given. Many
incorrect or misleading an-
swers. Student has a poor
grasp of assignment concepts.

8
6
4
2

Basic attempt to apply coding
style, with many errors or no
consistency. Very few mean-
ingful comments in code.

4
3
2
1

Very little to no evidence of
progress through version con-
trol history.

1

Very poor No attempt made to imple-
ment scheduling algorithm. 0 No logging output written to

speciĕed ĕle. 0 No attempt made at short-
response questions. 0

No attemptmade to apply cod-
ing style standards or com-
ment code.

0
No evidence of progress
through version control
history.

0

Penalty: Comments:

Total mark: /100

9

9



Changelog
v1.0 — 18 July 2012

1. Initial version

v1.1 — 15 August 2012

1. Fixed typo in example timing intervals (page 3, second paragraph)
2. Allow editing Makefile.in to add new source ĕles (page 7, ĕrst paragraph)

10


