
eUniversity of Queensland
School of Information Technology and Electrical Engineering

Semester Two, 2012

COMP3301/COMP7308
Assignment 0 — Shell using system calls

Due: N/A (not marked)

Version 1.0 — 14 May 2012

Introduction
e goal of this assignment is to refresh your knowledge of the C programming language and
the skills you will need to work at the kernel-level interface of an operating system (Linux). Your
task is to create a simple shell that must use system calls (rather than the higher-level C library
wrappers) to access the kernel. You must also answer some short–response questions that will
test your understanding of the concepts that you have implemented.

is assignment carries no weighting in the course and will not be marked, however, it is
strongly recommended you complete it. e concepts and practice you will gain from this as-
signment will be useful in the following assignments.

Program behaviour
e program you must produce will be called shell and will take no command-line arguments.
You do not have to handle the case where arguments are given to your program, though your
program should not crash.

When started your program should wait for commands to be given (one per line, terminated
by a \n) from standard in. e command should then be executed and its output printed to
standard out (if any). Another command should then be accepted.

If EOF is read on standard in, your program should exit with status 0. is is the only time
your program should exit (other than the usual signals which you do not have to handle). You
may assume that each line of input will have no preceding whitespace and that each argument (if
any) is separated by a single space. Blank lines should be ignored. Your program does not need
to handle processing input lines longer than 1024 characters long (including newline). If it reads
a line longer than this, it should print out input was too long\n to standard error and wait
for another line to be input.

1



If a line starts with a command that is not speciĕed below, your program should output
unrecognised command %s\n to standard error (where %s is the name of the command).

You should ensure your program behaves correctly when standard in is redirected from a ĕle.
Make sure you print any messages or output stated in this speciĕcation exactly as shown,

including any newline. ere should be no whitespace before or aer the message.

System calls vs. C library functions
e primary functionality of the assignmentmust be implementedwith system calls only. Miscel-
laneous I/O (for example user input) may use the convenience functions in stdio.h, stdlib.h,
string.h, etc.

If you are unsure if a function is a library function or a system call, the following command
may be useful:

man -k <foo> | grep '\(2\)'

(where <foo> is the function you are interested in). If the function you are looking for is not
listed in the output, it is not a system call.

Builtin commands
You must implement three builtin commands, as speciĕed below. You may assume that each
command will be given the correct number of arguments as speciĕed.

1: List a ĕle or directory contents recursively

lsr [filename|directory]

e command lsr has two modes, depending on the argument given.
If the argument given is a ĕlename, list the details of that ĕle only. e following attributes

should be printed in order (each separated by a space): entry type, size (in bytes) padded to 10
spaces, and the ĕlename. e ĕlename should have its leading directory stripped (if any). See
below for an example.

2



e type of an entry to be printed is given in the following table:

regular ĕle f

directory d

symbolic link s

any other type o

If the argument given is a symbolic link, details on the link should be returned — not the ĕle
it refers to.

For example, typing lsr /bin/bash might show the following:

f 934336 bash

If the argument given is a directory (or no argument is given, in which case assume it is the
current directory), ĕrst list each entry in that directory using the format described above, then
recurse into each subdirectory (if any) and list the entries in that directory (and so on). You
should make sure you list all the entries in a parent directory before recursing into a subdirec-
tory. Before printing the contents of a directory, your program should print the directory’s name
followed by a colon. Aer listing a directory’s contents, a blank line should be printed. See below
for an example.

A directory listing should list the ĕles in the order returned by the kernel: no further sorting
is required. You need not perform any preprocessing on paths given. e . and .. entries
should be ignored and not included in the output.

For example, typing lsr without any argument might show the following:

.:

f 102 Makefile

f 19123 shell

f 7212 shell.c

f 15504 shell.o

d 72 tests

s 27 mark.sh

o 5433 device

./tests:

d 72 cases

f 455 README

3



./tests/cases:

f 0 test-case-1

Your program should print a descriptive error to standard error if the ĕlename or directory
given could not be accessed (this includes any permission problems). You may wish to consider
using perror(3) for printing errors. All other output must be written to standard out.

Hint: read themanual pages for the getdents(2) and stat(2) system calls in their entirety!

2: Copy a regular ĕle

cp source dest

Copy the regular ĕle given by the source argument to the given destination. Aer a successful
copy, the contents of the destination ĕlemust be identical to the source: this commandmust work
with both text and binary ĕles. Text ĕles may contain both both ASCII and Unicode characters
and this should not stop your program from functioning correctly. ere should be no upper
limit to the size of ĕles that your program can copy. You may assume sufficient disk space exists
to copy to the destination.

Attempting to copy any other type of source ĕle (symbolic link, directory, block special, etc.)
should cause the error message source file type not supported\n to be printed and no
copy should be performed.

If the destination ĕle does not exist, permissions on the source ĕle should be preserved (ex-
cluding ownership) when creating it, including any execute bit that was set. You do not have to
handle changing permissions on the destination ĕle if it already exists.

If the destination ĕle exists and is a regular ĕle, your program should attempt to overwrite
it. If it is a directory, then your program should copy the source ĕle into that directory, us-
ing the same ĕlename as the source (for instance cp foo subdir will attempt to copy foo to
subdir/foo). Attempting to copy to any other type of destination ĕle should fail with the error
message destination file type not supported\n.

If the source ĕle cannot be opened (for whatever reason), then the destination ĕle should not
be created, or modiĕed in any way if it already exists. Consider using perror(3) for providing
descriptive errormessageswhen the source ĕle cannot be opened. Provided the copy is successful
and there was no error, nothing should be printed to standard out. Any errors that do occur
should be printed to standard error.

Do not attempt to copy one byte at a time — this is very inefficient.
You do not have to handle the case where the same source and destination ĕlenames given

to cp are the same.
Hint: the diff and cmp commands may be useful for validating that the contents of two ĕles

are identical.

4



3: Remove a regular ĕle or directory recursively

rm filename|directory

Remove the regular ĕlename or directory tree given from the ĕle system. is should act in
the same way as rm(1) does with the -rf arguments.

Any symbolic links encountered should cause the link to be removed, not the ĕle they refer-
ence.

If the argument given is a directory, your program should attempt to remove the directory
and its contents from the system. Your program is expected to handle any type of ĕle or directory
(including deep directory trees) that are encountered.

If the ĕle or directory speciĕed does not exist, or a permissions problem prevents its removal,
a descriptive error should be printed to standard error.

Short-response questions
1. Give a brief overview of the algorithm you used to implement the recursive directory list-

ing. Pseudocode is not required.

2. What Linux-speciĕc privilege would be required to preserve ownership on ĕles that are
copied? Describe how one would obtain this privilege.

3. What is the practical difference betweenusing the getdents(2) systemcall and the scandir(3)
library call? Some things to consider might be portability, safety and ease of use.

4. Copying data using read(2) and write(2) is the conventional way to implement the copy
functionality speciĕed in this assignment. However there is another system call that is
designed for this purpose and is more efficient. Which system call is this, and what are the
differences between using it and the standard read/write system calls? Why is it more
efficient?

Code compilation
You should provide a Makefile that will build your program and produce the shell executable
when invoked by make; that is:

make

e Makefile should use gcc with the -Wall -std=gnu99 compile Ęags. Compilation
should not yield any warnings or errors.

You must not link with any other libraries other than the default C library.

5



Coding style
Your solutionmust conform to the Linux kernel coding style document available at http://www.
kernel.org/doc/Documentation/CodingStyle (or Documentation/CodingStyle in the ker-
nel source tree). You may wish to run your code through the checkpatch tool to validate that
your solution adheres to the coding style. e following arguments may be useful to you (where
FILE is the C source ĕle you wish to check):

checkpatch --no-tree --no-signoff -f --no-summary FILE

e tool is available to download from the course website (under Resources).
You may also ĕnd the indent(1) tool useful with the following arguments:

indent -kr -i8 FILE

Please note that these are tools only— they should not be considered perfect. Always double-
check the results by hand to be sure.

Submission and Version Control
is assignment has no submission as it will not be marked.

However, it is suggested that you store your assignment source code in EAIT’s Subversion
system (you should already be familiar with this from previous courses). You should ensure all
of your source ĕles (including any .h ĕles if you have created them) and Makefile are committed
to the repository under the following URL (where s4123456 is your student number):

https://svn.itee.uq.edu.au/repo/comp3301-s4123456/a0

For information regarding ITEE’s Subversion system, see http://studenthelp.itee.uq.
edu.au/faq/subversion/.

You will be submitting future assignments using this method.

6

http://www.kernel.org/doc/Documentation/CodingStyle
http://www.kernel.org/doc/Documentation/CodingStyle
https://svn.itee.uq.edu.au/repo/comp3301-s4123456/a0
http://studenthelp.itee.uq.edu.au/faq/subversion/
http://studenthelp.itee.uq.edu.au/faq/subversion/

